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Estimating TOA Reliability with Variational
Autoencoders
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Abstract— Radio frequency (RF)-based localization yields
centimeter-accurate positions under mild propagation conditions.
However, propagation conditions predominant in indoor
environments (e.g. industrial production) are often challenging
as signal blockage, diffraction and dense multipath lead to errors
in the time of flight (TOF) estimation and hence to a degraded
localization accuracy. A major topic in high-precision RF-based
localization is the identification of such anomalous signals that
negatively affect the localization performance, and to mitigate the
errors introduced by them. As such signal and error characteristics
depend on the environment, data-driven approaches have shown to
be promising. However, there is a trade-off to a bad generalization
and a need for an extensive and time-consuming recording of training data associated with it.
We propose to use generative deep learning models for out-of-distribution detection based on channel impulse responses
(CIRs). We use a Variational Autoencoder (VAE) to predict an anomaly score for the channel of a TOF-based Ultra-wideband
(UWB) system. Our experiments show that a VAE trained only on line-of-sight (LOS) training data generalizes well to new
environments and detects non-line-of-sight CIRs with an accuracy of 85%. We also show that integrating our anomaly
score into a TOF-based extended Kalman filter (EKF) improves tracking performance by over 25%.

Index Terms— NLOS identification, NLOS mitigation, channel quality estimation, CIR, UWB, Deep Learning, VAE.

I. INTRODUCTION

High precision radio frequency (RF) localization enables
many indoor applications including the monitoring of pro-
duction facilities or robot localization. Technologies such
as Wi-Fi [1], Bluetooth [2], RFID [3], and Ultra wideband
(UWB) have been developed and optimized over recent years
[4] to achieve this. In contrast to most localization systems
that yield localization accuracies in the meter or decimeter
range, UWB uses a high bandwidth to estimate positions in
the centimeter range. However, this requires optimal signal
propagation conditions with a line of sight (LOS) between
transmitters and receivers, which can only rarely be found in
(industrial) environments. Enabling high positioning accuracy
in the presence of multipath propagation, especially under non-
line-of-sight (NLOS), is among the main research challenges.

UWB systems often use the time-of-flight (TOF) to obtain
range-estimates between transmitters and receivers. A down-
stream multi-lateration or tracking filter estimates the positions
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of the transmitters. Fig. 1 shows propagation scenarios from
indoor environments that potentially lead to wrong range
estimates. The green line shows an LOS path from TX to
RX4 while the red paths show signal propagation paths with a
different length from their actual distance due to reflection
(RX1), diffraction (RX2), obstruction (RX3), and scattering
(RX4). The indirect path caused by reflections usually leads to
a significant bias ∆d. Note that even under LOS propagation,
multipath components (MPC) may lead to erroneous estimates
due to bandwidth and signal power limitations. MPCs can
overlap with the direct path and a lower signal to noise ratio

Fig. 1: Complex propagation conditions, including specular
reflections, scattering, blockage and diffraction; gray rectan-
gles are walls and arrows are signal propagation paths from
the transmitter TX to the receivers RX1 to RX4.
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(SNR) leads to a degrading distance estimation [5].
Classical position estimators (such as least squares opti-

mizers or Bayesian tracking filters) suffer from such biased
range estimates. This is why a binary (LOS and NLOS) signal
classification often helps to mitigate the impact on the localiza-
tion performance [6]. As the propagation conditions strongly
depend on the environment, data-driven approaches have so
far achieved the most promising results in NLOS identification
[7]. For the categorization of TOF signals often the channel
impulse response (CIR) serves as a basis as it contains a
variety of spatial information about the environment and its
propagation conditions [8]. On the downside, as such signals
are highly environment-dependent [9], data-driven methods to
detect NLOS CIRs often do not generalize well to different
environments (i.e., the shape of the NLOS CIRs is directly
influenced by the geometry of the environment).

To bypass this generalization problem our main idea is to
only use LOS CIRs for training, as we assume that LOS CIRs
are less influenced by the environment, as the direct path is
the crucial aspect in the CIR. This also makes the deployment
easier and leads to a better generalization in contrast to the
related approaches which need both classes for training (as
they need a representative dataset). Our idea is to model
the distribution of normal samples (i.e., LOS signals with
reliable TOF estimates) to identify out-of-distribution signals
(i.e., signals with significant TOF errors) using a a variational
autoencoder (VAE) (i.e., a deep learning based generative
model). Instead of estimating anomaly categories we predict
a continuous quality parameter that enables a more detailed
rating of the input signals in the downstream processing.
Our experiments with real world CIRs from a UWB-system
not only show that we outperform existing one-class and
unsupervised approaches in the detection of NLOS CIRs but
that we also can considerably improve the tracking accuracy
in a challenging mixed environment (with our algorithm only
trained in a pure LOS environment).

The remainder of this article is structured as follows. Sec.
II reviews related work before Sec. III provides details about
our method. We describe the experimental setup in Sec. IV
and discuss the results in Sec. V.

II. RELATED WORK

A. Anomaly identification
While anomalous or erroneous signals have different levels

of degradation, the problem is often simplified to a binary
classification that only considers LOS and NLOS signals.
While there are approaches that analyze the CIRs on a coarse
grain (e.g., Kolakowski et al. [10] assume that NLOS signals
are more attenuated then LOS signals and use a threshold on
the maximum power) most approaches extract features from
the CIRs and use them for an ML-based classification.

Very popular is the usage of Support Vector Machines
(SVMs) [11]. However also a decision tree classifier has been
used [12]. In contrast to most NLOS identification approaches
that only consider two classes (LOS/NLOS) there is also work
that considers a more fine-grained categorization [13], [14].

In contrast to ML-based approaches that require a manual
feature extraction (which restricts them in the expressive power

of used features), models based on deep learning (DL) directly
work on raw data. Their modeling of the predominant non-
linearities shows promising results for e.g. direct positioning
from CIRs [15], [16] or velocity estimation [17]. Such methods
have also been used in the context of NLOS identification
where even small networks outperform existing approaches
[7]. Related DL-based approaches use deep feed forward
networks on the power of the first component [18], short-time
Fourier transform of the CIR in a convolutional neural network
(CNN) as a 2D image [19], or combine CNN-based feature
extraction with long short-term memory (LSTM) architectures
to model time dependencies in the signals [20]. However, all
these approaches (including those that use transfer learning
[21]) need representative data of both LOS and NLOS CIRs.

There is also work much closer to ours that also only relies
on LOS CIRs for training. Zeng et al. [22] compare a set
of reference LOS CIRs with the test set using a Pearson
correlation coefficient to get a reliability score. Miao et al.
[9] employ a one-class SVM that identifies the smallest hyper-
sphere including all normal data (i.e., LOS CIRs) to implicitly
classify NLOS (which is supposed to be not included in the
hyper-sphere). Fan et al. [23] use a unsupervised feature based
approach, which uses expectation-maximization to model a
Gaussian mixture model (GMM) to identify clusters for LOS
and NLOS in an unlabeled dataset. In contrast to them, we
exploit the raw CIR in a VAE to model the distribution of LOS
CIRs. This leads to a richer representation of our normal data
and therefore to a better identification of abnormal samples.

B. Anomaly mitigation
To exploit identified NLOS signals in positioning we can

either (1) exclude them (which, however, only works when a
sufficient number of receivers with LOS will still be available)
or we can (2) reuse them by correcting their ranging bias.

Maranò et al. [24] propose a least-squares SVM NLOS
identification to exclude NLOS signals. If there are less than
three nodes available the biases of the NLOS signals are
estimated and subtracted from the estimated ranges. Such
frameworks can also be realized with different classifiers
such as k-nearest neighbor [25]. There is also work that
skips the identification and immediately corrects the bias, e.g.
through Gaussian processes [26]. Wang et al. [27] used a semi-
supervised SVM to exploit unlabeled measurements, with only
a small subset of labeled samples, for range error mitigation.

While those approaches use features extracted from the
CIRs also DL-based approaches have been proposed. Schmid
et al. [28] employ the range and features of the signal in
a feed-forward neural network that estimates the bias of the
estimated range. Bregar et al. [29] exploit the raw CIR to
regress the error through a CNN.

Another class of approaches models uncertainties for range
estimates based on a channel model with known channel
statistics [30] or by modeling soft ranges [31] (i.e., a list of
range estimates with associated likelihoods). Mao et al. [32]
propose a Bayesian neural network for range error estimation
with uncertainty quantification. However, those approaches
require extensive measurement campaigns for sensing channel
information and ground truth positions.
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All such approaches require extensive measurement data:
NLOS identification requires a database with signal informa-
tion of LOS and NLOS labels while richer reliability repre-
sentations require channel states and ground truth positions. In
contrast, our approach is only trained on LOS CIRs to estimate
a continuous anomaly score that can not only be used for
NLOS identification but also to estimate the bias and variance
in a Kalman filter to enhance the tracking performance.

III. METHODOLOGY

For TOF-based positioning system we consider signals to
be anomalous if they induce perceptible TOF estimation errors
that degrade the localization performance. Hence, our idea is
to approximate the distribution of normal signals (LOS signals
from which we can reliably estimate the TOF) to identify
abnormal signals as out-of-distribution samples.

Moreover, instead of only categorizing the signals we aim
at estimating a continuous quality parameter that enables a
more fine-grained processing of the signals in downstream
tasks (such as positioning).

A. ML-based Anomaly Detection

Anomaly detection is often used on tasks in which we
have plenty of data from normal situations while data from
abnormal situations is rare. Classical ML-based approaches
such as Bayesian networks, one-class (OC) SVMs, or k-nearest
neighbors have successfully been applied for anomaly detec-
tion [33]. However, their requirement of a low-dimensional
feature input needs a feature extraction which is not trivial to
obtain and often leads to information loss.

Hence, DL approaches have recently been investigated.
Such approaches include one-class neural networks (OC-
NN) [34] (similar to OC-SVMs) or OC-NNs with feature
inputs from a pre-trained CNN together with pseudo-negative
samples from a Gaussian [35]. Beside end-to-end models
(that directly perform a classification) generative approaches
became popular recently. They model the distribution of nor-
mal samples to identify abnormal out-of-distribution samples.
For instance, generative adversarial networks (GANs) [36]
model the distribution of a latent space in an adversarial way
to detect abnormal input [37], [38]. However, as GANs are
difficult to stabilize during training [39] approaches based on
variational autoencoders (VAEs) are often used instead as they
also allow to model such distributions [40]. Sampling from the
estimated latent space of the input allows to determine a mean
reconstruction error that is higher for abnormal samples.

B. The Variational Autoencoder (VAE)

Variational autoencoders (VAEs) have been demonstrated
to learn structured latent representations of high dimensional
data [41]. A VAE consists of an encoder qθ, which maps input
data samples to latent distributions, and a decoder pφ, which
maps latent variables to distributions over data points. The
parameters of the encoder and decoder, θ and φ respectively,
are jointly trained to maximize

L(φ, θ;x, z) =
Eqθ(z|x) [log pφ(x|z))− βDKL(qθ(z|x)‖p(z))]

where p(z) is some prior (which we take to be the unit
Gaussian) and DKL is the Kullback-Leibler divergence. In this
work we use the the beta-VAE [42], a extension of the original
VAE objective with a hyperparameter β that balances the data-
likelihood and the latent distribution constraint. The encoder
qθ parameterizes the mean and log-variance diagonal of a
Gaussian distribution, qθ(z) = N (µ(z), σ2

θ(z)). The decoder
pθ parameterizes a Bernoulli distribution for each value in the
raw observation. This parameterization corresponds to training
the decoder with cross-entropy loss on a raw observation input.

C. VAE-based Anomaly Detection

Our approach uses the aforementioned VAE to detect
anomalous signals. The advantage of using the VAE is that
it allows us to map high-dimensional data samples xi from a
complex and unknown distribution P (x), i.e., xi ∼ P (x), into
a (lower-dimensional) space on which we define a distribution
P (z) using neural networks and variational inference.

We define each individual CIR xi as a complex vector
xi = [x1, · · · , xNs ]T , with P (x) being the (unknown) data
distribution over all observed LOS CIRs. The figure in the
abstract shows the structure of our VAE. The encoder is used
to estimate a conditional probability density function (PDF)
qθ(z|xi) for a given xi in a latent space whose dimensionality
can be chosen arbitrarily but that is usually much smaller
than the input space. The decoder then performs an inverse
transformation of a sample zi ∼ qθ(z|xi) under the condition
that xi ≈ x̂i. The distribution p(z) of the latent variables are
often chosen to be simple, in our case as isotropic Gaussian
p(z) ∼ N (0, I), where I is the unit matrix. To optimize the
VAE for an arbitrary p(x), θ and φ are optimized using a
sufficient number of samples drawn from P (x), see [41].

Our preliminary experiments suggest feed-forward neural
networks with three layers of (100, 80, 60) and (60, 80,
100) neurons in the encoder and decoder, and two latent
variables. This configuration yields a good trade-off between
computation time, accuracy, overfitting and generalization.

After optimizing the VAE on the training data distribution
P (x) that only consists of LOS CIRs, the decoder is able to
both sample and reconstruct CIRs from this distribution well.
Abnormal samples (such as NLOS CIRs) do not lie within
the training data distribution P (x) and are mapped to latent
variables from which a reconstruction performs poorly.1

D. Log-Likelihood Metrics for CIR-Reconstruction

The objective function of the VAE has two parts: (1) the
log-likelihood of the data (i.e., the reconstruction error) and
(2) a regularization term that constrains the latent distribution
towards the target distribution (i.e., that enforces zero-mean
Gaussian distributions of the latent variables). While the

1Note that also a batch of NLOS signals as input to the trained VAE
results in a latent space that is not well aligned to a unit Gaussian. While we
could also exploit this to detect out-of-distribution samples we focus on the
reconstruction as this allows to evaluate single samples (instead of batches).
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second term works well for our problem we need to find an
appropriate metric that measures the data likelihood.

The metrics are defined for an arbitrary one-dimensional
input vector y and its reconstruction ŷ. We investigate three
candidates to measure the similarity of the observed and
reconstructed CIRs: (1) the mean-squared error, (2) the Pear-
son correlation coefficient, (3) the time index signal strength
indicator.

1) Mean squared error: A typical and widely used metric
(also in VAEs) is the mean squared error (MSE). The MSE
considers the quadratic error of the signals at any time index:

MSE(y, ŷ) =
1

N

Ns∑
n=1

(y[n]− ŷ[n])2. (1)

However, while being a metric that is easy to optimize, the
MSE is more sensitive to large errors, as the errors are squared
(in contrast to metrics such as the mean absolute error). For
the evaluation, we normalize both the input and reconstructed
CIR with the maximum of the input CIR to make the metric
insensitive to different amplitude levels of the signals.

2) Pearson correlation coefficient: The Pearson correlation
coefficient (PCC) measures the linear correlation between two
random variables. It is well-known as a distance metric for
time series clustering [43]. The discrete PCC is defined as

r(y, ŷ) =

∑Ns
n=1(y[n]− ȳ)(ŷ[n]− ¯̂y)√∑Ns

n=1(y[n]− ȳ)2
√∑Ns

n=1(ŷ[n]− ¯̂y)2
, (2)

where ȳ and ¯̂y are the means of y and ŷ.
3) Time index signal strength indicator: As the aforemen-

tioned metrics only consider the similarity of time series
in general we define a metric that also takes the semantic
similarity of CIRs into account. We assume that (1) the VAE
reconstructs all valid LOS signal components within the CIR
well while invalid signal components only remain with a small
magnitude in the reconstructed CIR, and (2) that a high signal
to noise ratio (SNR) is more reliable for TOF estimation
[5]. Hence, large magnitudes are more likely to be valid that
smaller ones. We therefore use the Time Index Signal Strength
Indicator (TISSI) to weight the input signal components with
the reconstructed signal components at any time index:

TISSI(y, ŷ) =

Ns∑
n=1

(
∣∣y[n]

∣∣·∣∣ŷ[n]
∣∣). (3)

The sum of all valid signal components is therefore a good
indicator on how anomalous an input signal is. While TISSI
is not a distance metric, i.e., we cannot use it for training, it
offers advantages for testing, see Sec. V-A.

E. Deriving the Anomaly Score

We use the reconstruction error as a measure of anomality.
As the latent space representation of each individual CIR xi is
represented by a Gaussian distribution in the VAE from which
Nk individual latent space reprensentation zi,j are sampled
(i.e., zi,j ∼ P (z|xi)), the reconstructed CIR is obtained by

Fig. 2: Schematic top view (left) of the corridor environment
(right). Grey rectangles are reflective walls; red dots show the
receivers R1-R6.

applying the decoder on zi, so that x̂i,j = qθ(zi,j). Based on
the reconstruction, we calculate the anomaly score by

Ψ(xi) =
1

Nk

Nk∑
j=1

L(xi, x̂i,j), (4)

where L is one of the distance metrics introduced in Sec. III-
D. From experiments we found that drawing Nk ≥ 10 yields
reliable results. With the definition above we assume that
samples with a higher anomaly score induce larger ranging
errors.

F. Tracking filter integration of anomaly score

As the anomaly score can be related to both a systematic
bias in the TOF estimation and an increased estimation un-
certainty, it can be included into the observation model of
an extended Kalman filter (EKF). Using the anomaly score
to estimate a TDOA bias b(Ψn) for each TDOA n, the
measurement model can be adapted to

hn(x) = dn(x)− d0(x) + b(Ψn) ∀ n ∈ [1, · · · , Nr], (5)

where dn(x) and d0(x) denote the distances to receiver n
and the reference receiver 0. As b(Ψ) is independent of x,
the linearized measurement function is not affected by this
addition. The anomaly score can also be seen as a stochastic
quality indicator and hence used for the definition of the mea-
surement covariance matrix R, s.t. an error variance σ2(Ψ)
can be assumed for each receiver n. From the assumption
that the measurement noise in the TDOAs is stochastically
independent follows the measurement covariance matrix:2

R = diag([σ2(Ψ1), ..., σ2(ΨNr )]). (6)

We show the estimation of b(Ψ) and σ2(Ψ) for an exem-
plary tracking problem in our experimental results in Sec. V-B.

2Our model does not consider the statistical dependence of the error terms,
which is introduced by the addition of the uncertainty in determining d0(x).
However, under the assumption that anchor 0 has pure LOS this term is
significantly smaller than the error terms occurring in NLOS conditions.
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Fig. 3: Training and evaluation pipeline.

IV. EXPERIMENTAL SETUP

We evaluate our anomaly detection by investigating the
tracking performance of a time-difference-of-arrival (TDOA)
based Kalman filter. This shows the applicability and the gen-
eralization of the algorithm. We evaluate tracking in a complex
environment with NLOS and dense multipath propagation,
while we train our anomaly detection in a clean scenario that
only contains LOS conditions and low multipath propagation.

A. Environments
Our training environment is an ideal positioning scenario

with LOS connections between all receivers and transmitters.
There are no obstacles close to the recording area of size
45 m x 25 m. Ground, walls and ceiling only induce marginal
multipath propagation. The scenario includes 6 different re-
ceivers, which are placed around the recording area, shown as
red dots, see Fig. 2.

In a second step we add reflective walls systematically
within the area to create mixed (LOS / NLOS) propagation
conditions. The walls are aligned as a corridor, which allows
to easy label the data as (LOS / NLOS) geometrically, using
the position of the receivers and the walls.

We recorded 198,461 LOS CIRs in the clean scenario, and
262,133 LOS CIRs and 42,765 NLOS CIRs in the corridor
environment.

B. Hardware setup
Our 6 stationary receivers and the moving transmitter use a

Decawave DW1000 UWB transceiver module. We configured
a TDOA setup and recorded the TDOAs and CIRs for each
of the receivers. We used a fixed receiver under good LOS
conditions as a reference receiver. The TDOAs and their
associated CIRs are recorded with a sampling rate of 10 Hz. A
high precision optical Nikon iGPS localization system delivers
ground truth positions at a positional error <1 mm.

V. EVALUATION

Erroneous TOF estimates harm localization accuracy as
estimators such as Kalman Filters rely on constant variance
and unbiased range estimations. In literature, two different
approaches are proposed to enhance localization accuracy in
mixed (LOS / NLOS) environments using tracking filters or
least squares optimizers: (1) excluding all NLOS CIRs, or (2)
correcting their error to make them usable again. We show
that we enable both (1) an NLOS identification and (2) an
estimation of error variance and bias to enhance the tracking
performance of a TOF-based extended Kalman filter (EKF).

Fig. 3 shows our training and evaluation pipeline. We first
train the VAE only on LOS CIRs. To then classify between

NLOS and LOS we pick a threshold on the anomaly score (that
we can either tune manually or automatically with validation
data). We discuss the results of the NLOS identification in
Sec. V-A. Sec. V-B shows how to estimate the TOF bias and
variance for the EKF (with additional data including CIRs and
their ranging errors) and evaluates the tracking performance.

A. NLOS identification
To evaluate the NLOS identification performance we use

the clean and corridor environment. We split the training data
set into a training and validation subset and use a balanced
test data set, separate from the training and validation data.
The CIR contains 60 samples at a resolution of 1 ns with
a real and an imaginary part that we (1) concatenate to a
120 samples long input tensor and (2) normalize (use absolute
values and a scaling to get values between 0 and 1) to facilitate
the optimization for the VAE.

1) Baselines: We used four approaches known from litera-
ture that serve as a baseline to compare our approach with.

CORR [22] estimates the Pearson correlation coefficient
with a set of reference LOS CIRs. We use the magnitude
of the CIR and 110 samples starting 10 samples before the
main peak. As reference CIRs, 100 randomly LOS CIRs were
chosen from the training database. We use the estimated mean
Pearson correlation coefficient as a reliability score for the
given CIRs of the test dataset.

GMM [23] and OC-SVM [9] are both ML-based baselines.
We used six features: energy index, correlation maximum,
energy decay time index, peak decay exponent and spectral
features (bandwidth, centroid, rolloff, flatness). On the time-
frequency features we applied a principal component analysis
and only used the two main components. We optimized the
hyper-parameters of the OC-SVM with a grid search3. As
GMMs assume that all features follow Gaussians, we evaluated
all possible features combinations as inappropriate distributed
features lead to a degrading classification performance.

A GAN [44], a deep generative model, with an encoder
E(x), a generator G(E(x)), and a discriminator D(x, z)
serves as a baseline that is most similar to the VAE. E and
G are jointly trained to solve a minG,E maxD optimization
problem (we refer to [44] for details on the optimization
procedure). We optimized the threshold for the anomaly score
to classify NLOS based on a balanced ratio between true
positive and true negative on the validation data set.

2) Performance evaluation: We train the VAE using the
MSE and derive the anomaly score for all the CIRs in the test
dataset. We estimated the hyperparameter β experimentally
and found that β = 10−3 yields stable results for both
environments. Fig. 4 shows a histogram of anomaly scores of
the test dataset using the TISSI as evaluation metric. Note that
as TISSI is not a distance metric, lower values indicate more
anomalous signals, while higher values are less anomalous.
It is clearly visible that NLOS signals yield a lower TISSI
anomaly score than (most of) the LOS signals.

3We searched in the following range ν ∈ {0, · · · , 1}, Γ ∈
{10−1, · · · , 10−5}, kernels = {linear, radial} and selected the best pa-
rameters based on the test data. For training with clean dataset: {kernel=’lin’,
ν =0.54}; for the corridor dataset: {kernel=’lin’, ν = 0.77 }
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Fig. 4: Anomaly scores histogram (TISSI), trained with MSE.

TABLE I: Performance of the proposed algorithm and the base-
lines trained in the Clean|Corridor scenario. The algorithms
are evaluated in the Corridor environment.

ACC F1 PREC LOS NLOS
VAE 0.85|0.85 0.85|0.85 0.85|0.85 0.85|0.85 0.84|0.85
GAN 0.79|0.81 0.79|0.81 0.79|0.81 0.79|0.81 0.79|0.81
OC-SVM 0.79|0.80 0.79|0.79 0.79|0.85 0.76|0.61 0.83|0.99
GMM —|0.81 —|0.81 —|0.81 —|0.83 —|0.79
CORR 0.67|0.69 0.67|0.69 0.67|0.69 0.67|0.69 0.67|0.69

We can also easily derive the appropriate threshold, i.e.,
in this case at 0.58, which yields a classification accuracy of
85 %. Trained also on LOS CIRs from the corridor scenario the
accuracy remains the same. This not only proves that the VAE
captures environment-specific properties of the LOS CIRs, it
also shows that the VAE generalizes well to different unseen
environments and propagation conditions as the accuracy
remains the same.

Table I shows the results of our VAE along with the
results of the baseline algorithms trained in the clean and
in the corridor environment, respectively. Our VAE-based
model outperforms all baselines. The non ML-based approach
(CORR) lacks far behind (67 % accuracy in the clean scenario
and 69 % in the corridor). While, OC-SVM (79 % and 80 %)
and GMM perform similarly well, GMM can only be trained
in a mixed environment as both classes (LOS and NLOS) are
needed for training. For GMM we used a subset of the corridor
scenario for training. While the aforementioned approaches
have the same accuracy, the OC-SVM overfits to NLOS with
a recall of 83 % trained in the clean and 99 % in the corridor
environment.

We see several limitations of the ML-based baselines. First,
there is an information loss induced by the manual feature
extraction. Second, the complexity of the decision boundary
is limited by the underlying model (OCSVM: restricted to
decision boundaries provided by kernels; GMM: assumes that
the features are normally distributed for each class). The OC-
SVM needs a labeled dataset with LOS and NLOS samples
to tune the hyper-parameters (which is also difficult as the
algorithm is very sensitive to hyperparameter changes).

However, their most important limitation stems from the
lack of generality of the employed features as many multipath-
related features may have similar outcomes under different

propagation conditions in other environments.4

For the non ML-based baseline (CORR) that estimates a
continuous reliability score we also choose a threshold with
an equal recall ratio. However, the overall accuracy is low
compared to the other approaches, which means that the
reference CIRs are only a rough representation of the LOS
distribution within the environments.

The GAN yields an accuracy of 79 % for the clean envi-
ronment and 81 % for the corridor environment. While this
potentially can be further tuned and optimized (even to be
en par with the VAE) we experienced stability issues during
training (which is a known challenge [39]) as the optimization
is very sensitive to hyperparameters.

3) Metric evaluation: We proposed three different metrics to
model the log-likelihood of the CIRs in the VAE. For this, we
again evaluate the performance of the metrics using training
and test data from the corridor environment. While we use all
metrics for the evaluation, we trained our model only with the
MSE metric.

The accuracies range from 77 % using the MSE, to 82 %
for the PEAR and up to 85 % for the TISSI metric. The MSE
for evaluation performs worst, which indicates that the MSE is
able serve the VAE in the modeling of the data distribution but
fails to evaluate the semantic similarity of the data. However,
compared to the generic time-series metrics, TISSI yields the
highest accuracies for the evaluation as the metric is specified
to measure the application-specific properties of the CIR.

B. EKF Tracking integration
A TOF-based EKF expects unbiased range estimates with

Gaussian distributed errors. Our idea is to use the estimated
anomaly score Ψn to determine a bias b(Ψn) and variance
σ2(Ψn) for every receiver n and range estimation.

With a second dataset that contains ranging errors and
corresponding CIRs we first estimate the anomaly score of
every CIR and then bin the ranging errors based on the
anomaly scores, see Fig. 5. We split the dataset into 14 bins
with uniform sizes and exclude bins with small sample counts.
The red dots show the mean ranging error, while the vertical
lines show the standard deviation within the bins. There is a

4For instance, the energy level of LOS CIRs in multipath-free propagation
can have the same value range as NLOS CIRs under conditions with multipath
due to constructive interference. However, as we may have not seen the
NLOS CIRs in the target environment during training, the ML based models
mistakenly classify such CIRs as LOS.
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Fig. 5: Ranging error [m] binned using the anomaly score (red
dots: bin’s mean bias; black lines: bin’s standard deviation).
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Fig. 6: Localization error as CDF with NLoS detection (N),
with error correction only correcting NLoS signals (N/E), only
error correction (E), and a baseline (B) without correction.

clear correlation between mean ranging error and the anomaly
score. The mean ranging error increases monotonically with
smaller TISSI, and the standard deviation (thus also the
variance) increases with a higher reconstruction error, which
indicates the degradation of the range estimation with low
quality signals. During tracking we estimate an anomaly score
for every receiver and determine the corresponding bin to
get the mean bias and variance of the anomaly category.
We also use the proposed NLOS identification approach to
determine the channel state of the signals (LOS / NLOS). For
this experiment we use a trajectory from the corridor scenario
separated from the training dataset.

Fig. 6 shows the cumulative distribution function (CDF) of
the localization error using the bias and variance estimation
(E), a combination of NLOS identification and bias variance
estimation where we only correct the TOFs from the NLOS
signals (N/E), an estimator that simply excludes detected
NLOS signals (N), and a baseline (B) that uses all CIRs for
tracking without any correction. Table II shows the mean
absolute error (MAE) where Clean means that the VAE is
trained on LOS CIRs of the clean scenario and Corridor that
the VAE is trained using LOS CIRs from the corridor scenario.
From the results we can clearly see that our anomaly score
significantly improves the tracking performance. While simply
excluding NLOS signals (N) already improves the localization
error of 13.7 cm (without any correction) by about 25 % to
10.3 cm. We also achieve similar results of 10.8 cm by reusing
all receivers if we use the bias and variance estimation (E).

However, reusing NLOS signals (N/E) and only applying
the variance and bias estimation to them does not improve
the localization error over E. The high variance of the NLOS
ranging errors leads to a low influence of the NLOS links in the
EKF compared to the LOS signals with a significantly lower
variance. By using the VAE trained on the corridor scenario,
the localization performance slightly increases for the error

TABLE II: MAE in the Corridor scenario by using the VAE
trained with LOS CIRs of the clean and corridor scenario.

Variant MAE [m] (Clean) MAE [m] (Corridor)

E 0.109 0.101
N/E 0.108 0.106
N 0.103 0.103
B 0.137 0.137

correction E. By using scenario-specific LOS signals from the
corridor environment, the VAE can take the predominant prop-
agation conditions into account to model the reliability more
accurate. The NLOS identification accuracy remains the same
for both environments, thus also the tracking performance by
excluding NLOS signals N. However, the overall performance
is quite similar for our approach trained in both environments,
which indicates that the proposed algorithm generalizes well
to different environments and propagation conditions.

Note that while we also could have trained a regression
model to predict a bias and variance from an anomaly score
we resort to the simple binning scheme to better analyze and
evaluate the tracking performance of our EKF.

VI. CONCLUSION

We presented a channel quality estimation approach based
on out-of-distribution detection with VAEs. In constrast to
previous work we only need LOS training data to yield a high
level of generalization. Through the modelling of the distri-
bution of reliable LOS CIRs we derive an anomaly score that
enables a deep integration into classical tracking filters such as
TOF-based EKFs. The reliability score extracted through an
application-specific metric TISSI predicts NLOS CIRs with an
accuracy of 85 %, trained in a pure LOS environment and can
be used to estimate the bias and variance of TOF estimates,
improving the tracking performance by over 25 %.
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