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Abstract—Digital Contact Tracing (CT) protocols based on
Bluetooth are best implemented at the system level to save
resources and preserve security aspects. Combined with a
government-monitored software platform, these CT-protocols can
then be used to support controlling pandemics such as COVID-
19. However, it is unclear how these protocols have to be
parameterized to ensure the most accurate and reliable CT.

This paper describes how we derived optimal parameters for
a decentralized CT from extensive measurement campaigns that
we carried out together with Deutsche Telekom (DT) and SAP
under the supervision of the Robert Koch Institut (RKI). We
examined the Google/Apple Exposure Notification Framework
(ENF), which in combination with the front-end, i.e., the German
Corona-Warn-App (CWA), enables digital CT in Germany. With
centimeter accurate optical reference systems we show that
optimal parameters are application-specific. However, they cause
impractical high resource costs. In contrast, optimized general
parameters offer an everyday compromise between energy costs,
applicability, accuracy, and reliability of the ENF.

Index Terms—Digital Decentralized Contact Tracing, COVID-
19, SARS-CoV-2, German Corona-Warn-App, CWA, ENF.

I. INTRODUCTION

Contact tracing (CT) followed by quarantining identified
exposed people in infected index cases is one of the most
important activities to hold back the spread of communicable
diseases that are transmitted from person to person, such as
COVID-19. While the manual tracing of contacts is important
and inevitable it is extremely resource-intensive and time-
consuming [1]–[3]. Especially with high incidence values,
manual CT becomes impractical when used in isolation [4].

The probability of infection usually increases with the
pathogen dose, which in turn increases with the excretion rate
of the contagious individual and the duration of the interaction,
while it decreases with distance. Thus, the duration of a
contact with a contagious person, and the distance between
those involved, are obviously measures of infection risk [5].
The automatic exposure notification (EN) of conventional CT
improves notification, privacy, scalability [6], [7], and handling
of potential chains of infection [8], [9]. The main challenge
is the error-free detection and tracking of the contacts of an
infected person during their (unnoticed, but contagious) initial
phase of the infection in everyday life [8], [10].

Epidemiological models indicate an advantage of such
smartphone-based automatic EN technologies to detect and
warn COVID-19 infected people. Google and Apple joined
forces and provided a consistent privacy-preserving API with
which applications notify exposure (Google/Apple Exposure
Notification - GAEN) based on the attenuation of a Bluetooth
signal emitted by an infected person’s device, the duration
of its reception, and its timing in relation to the occurrence
of symptoms and the date of laboratory detection of SARS-
CoV-2. Software applications based on the GAEN protocol,
such as Immuni (Italy) [11] and SwissCovid (Switzerland) [9]
use two main decision criteria for notifying users after SARS-
CoV-2 exposure and recommend appropriate need for action:
(cumulative) contact duration of 10 min within a certain radius
such as 1 to 2 m [12]. This mirrors criteria and rules as they
are also applied to conventional CT, based on epidemiological
evidence and assumptions [13], [14].

However, the challenges are two-fold. First, the attenuation
of Bluetooth signals is not a reliable measure of the distance
without a well-tuned parameterization [15]. While fluctuations
in the power level of BLE devices can be calibrated out,
objects between transmitters and receivers (such as furniture,
walls, clothing, etc.), antenna patterns, and 2.4 GHz radio
interference attenuate and influence the signals non-determi-
nistically [16], [17]. Second, the risk of infection is not a
binary function of distance, duration or timing [18]. Some
studies [19] even suggest that the GAEN protocol does not
reliably identify and trace contacts. Hence, the main goal of
the GAEN protocols is to reduce overestimated distances (i.e.,
false negatives) and thus minimize undetected contacts [20].

This paper describes how we determined the parameters
of the German Corona-Warn-App (CWA) with respect to the
GAEN protocol. In a cooperation with Deutsche Telekom,
SAP, Google/Apple, and under the supervision of the Robert-
Koch-Institut (RKI) and the federal government of Germany,
we proposed optimized parameters and investigated their ef-
fects on CT accuracy in typical everyday situations.

In our experiments we simulated a range of everyday situ-
ations, including (semi-)controlled public transport, e.g., bus,
airplane, and subway, as well as typical everyday scenarios
with (n=283) individual (synthetic) test persons to cover differ-978-1-6654-0402-0/21/$31.00 © 2021 IEEE
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ent motion dynamics and propagation environments and to de-
rive parameters and their effects on the expected CT accuracy
in selected scenarios. Our analysis shows that optimal parame-
ter sets are application- and situation-specific. However, a prior
classification of the respective situation and environment for
the optimal selection of certain parameter sets is impractical
even for modern phones and would limit their usability. Hence,
a general parameter set is proposed which provides almost
identical accuracy, is resource-saving, and can be transferred to
typical everyday situations. In contrast to similar studies [21],
our optimized GAEN parameterization identifies contacts even
in an unfavorable scenario (F1-score=53%, F2-score=58%)
and yields almost few false negatives.

The rest of the paper is structured as follows. Sec. II
discusses related work. Sec. III presents the CWA system and
architecture, and our method. Sec. IV describes experimental
setups and Sec. V evaluates the results. Sec. VI concludes.

II. RELATED WORK

A total of 49 nations use CT: 2 with unknown software;
8 out of 47 use sensitive absolute positions, e.g., GPS; 18
of 47 use GAEN; the rest uses proprietary developments; 30
only use BLE; 17 combine Bluetooth with other information,
mostly GPS or QR code [22]. Thus, the EN System (ENS)
developed by Google/Apple has emerged as a de facto standard
for digital CT. The keys to the success of the ENS are
integrated privacy and expected performance. So far, only a
few publicly available studies have examined these aspects and
shown that ENS, like any other BLE-based range estimation
system, performs unpredictably due to wireless propagation
effects [20], [23], [24]. They have also shown that all ENS
configurations tend to miss real contacts. In response, many
countries are continuously monitoring their configurations.

Leith et al. [19], [20], [23] report results of a COVID-19 CT
measurement study with a Google Pixel 2 and GAEN (<v1.5)
carried out on a light-rail tram (7 participants) [19] and a
bus (60 pairs of phone locations from 5 participants) [23]. In
both studies they found only little correlation between the RSS
and the phone distances. A follow-up study [19], [23] used
the same phones for the bus [23] and tram [19] scenarios to
reduce the variability in the data and examined the effects of
the environment and the way people hold their phones. While
it is generally known that variations between different chipsets,
antennas and housings cause a high variability in signal
attenuation, they identified the following key factors [20] that
influence the measurements: (i) differences between Bluetooth
chipsets; (ii) (small) changes in the relative orientation of
Bluetooth sensors; (iii) radio environments with an obstructed
or NLoS connection; (iv) signal reflection from walls, floors
and objects; and (v) channel hopping. However, from their
studies it remains unclear how parameter calibration mitigates
(i), and it is unclear how (ii) - (v) can be compensated at
all. Thus, we pre-examined general calibration parameters to
compensate for differences between phone models.

Simula et al. [24] conducted (semi-)controlled experiments
on a selection of representative phones to test the performance

of two (custom Smittestopp and GAEN) CT systems. Their
GAEN-based (v1.5) CT used the same parameters (i.e., similar
levels of attenuation and definition of close contact) as the ap-
plications in Germany and Great Britain [25]. They found that
GAEN almost always recognizes contacts on iOS (max. error:
1 out of 25), while it fails more often on Android. Instead,
Smittestopp always yields undiscovered contacts both under
iOS (max. error: 6 out of 30) and Android (max. error: 30
out of 30). In the semi-controlled experiments they simulated
8 everyday situations (fitness center; two nearby restaurants;
restaurant; bar; shopping center; bus; café; office) and found
that GAEN is more accurate (85% high risk detection) than
Smittestopp (80% high risk detection) and yields a higher
accuracy (recall: 84.6, precision: 78.6, and accuracy: 84.8, true
positive (TP) = 84.6% and false negative (FN) = 15%) than
Smittestopp (recall: 84.6, precision: 73.3, and accuracy: 81.8).
However, their study design does not show the impact of each
scenario on the final results. In addition, they do not report
whether the phones are calibrated and how they have been
placed and how accurate their reference metrics or systems
are. In contrast, we designed a similar study concept, but report
important facts and results.

We agree with previous studies and think that the GAEN
with optimized and calibrated parameters for everyday situa-
tions presents a valuable solution for digital CT. We suggest
to use the number of undetected critical contacts (FN) as
a common metric for the assessment of CT systems. In
contrast to previous studies of Leith et al. [19], [20], [23] our
experiments prove that sensitive, well-thought-out parameters
enable to detect almost all important infectious contacts at a
moderate oversensitivity. Although available studies suggest
that (Bluetooth) RSS-based CT is possible, only few practical
GAEN-based studies are available today and (to the best of
our knowledge) non of them uses an exact reference system
which leaves the functional limits of CT applications based on
RSS still unknown.

III. SYSTEM ARCHITECTURE

A. The German Corona-Warn-App (CWA)
Fig. 1 shows the (simplified) processing pipeline of the

German GAEN-based Corona-Warn-App. Applications based
on GAEN regularly search for exposure information from
users who have been positively tested for COVID-19. The
current implementation of GAEN receives beacons (advertise-
ment messages) from neighboring devices every 120 to 300 s
and announces beacons every 250 ms. A received beacon can
be interpreted as an indication of proximity and its attenuation
level indicates the likelihood that it is within a certain distance
to the device sending the beacon. From these messages a
receiver estimates the duration and distance of a contact.

BLE devices can be configured to transmit beacons at
regular intervals. To distinguish between beacons each de-
vice running GAEN generates a random Temporary Expo-
sure Key (TEK) once a day. Based on the TEK, Rolling
Proximity Identifiers (RPIs) are generated and updated approx-
imately every 10 min (hence, around 24 · 60/10=144 RPIs
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Fig. 1. Pipeline of the German Corona-Warn-App (CWA).

are generated per day) to improve privacy. The transmitted
beacons carry the current RPI as well as encrypted metadata
(MD) that contains the wireless transmit power level.

In case of an infection the personal TEKs are uploaded to
a central server. Other CWA applications on other devices can
then download these TEKs and use them to identify relevant
RPIs that were received via beacons and are stored on the
device. If there is a match, the values reported by GAEN can
be used to determine the attenuation time to estimate the risk
of infection and to trigger an EN if this risk is sufficiently
high. A typical requirement of an epidemiological risk model
(regulated by the RKI) is that a person is, e.g., from 10 min
within a radius of 1.5 m to an infected person. The assignment
of the GAEN attenuation duration to the EN is therefore
largely based on the attenuation level as an indicator of the
proximity between persons.

The CWA is open source1 and is based on the GAEN
system. CWA reviews exposures from the latest 14 days
several times a day. This captures the vast majority of contacts
with positive cases.2 This recommendation is based on current
knowledge about the contagious period of COVID-19 and the
incubation period, i.e., the time window from infection to
symptom onset [26].

B. GAEN-based Exposure Estimation

GAEN enables the CWA to request the characteristics of
exposure to COVID-19 positive people. The CWA uses a series
of thresholds a∗ that divide the range of attenuation values
within a 30 min time window into 4 buckets (near: Bn:
[0, an); mid: Bm: [an, am); far: Bf : [am, af ); very far:
Bvf : [af ,∞)). The Exposure Score (ES) is an estimate of
the duration of exposure in the immediate vicinity, i.e., the
weighted sum of the duration per attenuation bucket:

ES = wn · tn + wm · tm + wf · tf + wvf · tvf , (1)

where tn, tm, tf and tfv are the exposure durations in the
attenuation areas Bn, Bm, Bf , and Bvf and wn, wm, wf , and
wvf are their individual weights. To estimate the overall risk
score, the ES is also influenced by the Transmission Risk Value
(TRV) of the contact. In the following, the TRV is assumed to
be 1.0 and is therefore neglected. In the end all ESs per day are
summed up. If the total duration exceeds a threshold, a risk is
reported by the CWA. This threshold-duration is based on the
RKI’s epidemiological model, which defines a risk encounter
as ESEPI ≥10 min for a single calendar day. This is calculated
for each day for the current and the last 14 days.

1https://github.com/corona-warn-app
2Assuming the positive contact also uses the CWA and reports its infection.

C. Parameter Optimization

The performance of the CWA is mainly influenced by
choosing the best set of thresholds an, am, af , avf and corre-
sponding weights wn, wm, wf , wvf . The key idea is to observe
reference contact times, their duration, and their proximity
from phones that best approximate the real proximity of two
people in everyday situations.

To find optimal parameters for CWA, we conducted a
large-scale parameter search with approximately 0.5 million
combinations based on data from all experiments, see Sec. IV.
Based on the epidemiological model we derive condition
positive (P) as a risk encounter with ES ≥10 min measured
by a reference system, and the opposite with ES<10 min as
condition negative (N). Accordingly, we define TP (if P is
confirmed by CWA), TN (if N is confirmed by CWA), FP (if
CWA failed to detect N) and FN (if CWA failed to detect P).

The search for optimal parameters was carried out with
the following objectives: minimize FN (undetected critical
contacts) and maximize TP (detected critical contacts). At the
same time FP (falsely reported noncritical contacts) and TN
(correctly detected noncritical contacts) are less critical. Thus,
we optimize the attenuation thresholds a∗, their weights w∗,
and ESCWA above which a contact is classified as positive, w.r.t.
the smallest FN values and order according to the highest F2

(β=2) score. Note that the Fβ-score measures the accuracy
of a test using precision and recall. Precision is the ratio of
true positives (TP) to all predicted (true and false) positives
(TP+FP). Recall is the ratio of true positives to all actual
positives (TP+FN):

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

(2)

=
(1 + β2) · TP

(1 + β2) · TP + β2 · FN + FP
. (3)

With an increasing β (> 1), the recall is weighted higher than
the precision and a high F-Score ensures lower FN values. RKI
recommends β=2 to weight FN more heavily and to highlight
possible undetected infected cases on the one side but not to
exhaust the test capacities on the other side. We report the
FN values because a single undetected positive case can have
major consequences and because there is no β to weight the
F-Score so that a single case has an effect on the final F-Score.

IV. EXPERIMENTS

We designed our experiments so that we can (to the best of
our knowledge) derive a number of optimal parameters for
everyday situations in Germany. First, Sec. IV-A describes
the hardware and software infrastructure that we use for our
experiments. Then, Sec. IV-B describes our three studies: the
first evaluates the influence of different materials on the atten-
uation and accuracy of the distance estimation, and the second
and third examine (semi-)controlled everyday situations with
a robot or human participants.
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(a) Reference system. (b) Overview of our controlled experiment.

Fig. 2. Left: Robot reference system r, obstacles o and phones s. Phones s
are attached to the obstacles o, which form our synthetic human participants
(PSP), see bottom right corner. Windshield washer fluid in a canister has
attenuation characteristics (about 15 to 20 dB) that are comparable to those
of the real human body; Right: Overview of our large scale experiments
with reference robot r. A: bar, B: queue, C: dining restaurant, B+C: fast
food restaurant, D: crowd, E: school, A-D: large office, A-E: fairground and
shopping center, and F: bus.

A. Hardware and Software Infrastructure

Measurement Systems. Our controlled experiments use
40 different phones with Google’s Android OS (8×Pixel 4,
20×Pixel 4a, 1×Huawei Honor 20 and 11 different Sam-
sung phones: 2×A40 and 1×: S10+, A20e, A40, A50, S8,
S9+, Note 8, Note 9, Note 10+). We resort to 20 Google
Pixel 4a (Android version 10) phones for our semi-controlled
experiments to reduce variability. The phones are calibrated
according to the Google guidelines [27]. We deploy a modified
CWA with GAEN-API version 1.7 to start and stop CT using
REST and the Android Debug Bridge (adb).

CWA Modification. We use a modified CWA on all devices
and register them in the Google GAEN whitelist so that they
can utilize the API. The modified app serves as an intermediary
between a Python application and the GAEN-API. It allows
to control the API using REST, e.g., to enable and disable
the contact tracing, start and stop the transmission of BLE
beacons, report the devices as infected and upload their TEKs
to a custom server, download shared TEKs, and to query
generated ExposureWindows. A fresh install resets the TEK
(the automatic reset only happens once a day).

Reference Systems. To collect reference data on the actual
temporal and spatial relationships of the individual phones, we
use two different time-synchronized optical systems: For our
controlled large-scale studies on an area of 44 × 33 m, we use
a NIKON iGPS system (CEP95 ≤0.9 cm on average) in the
Fraunhofer IIS L.I.N.K test center [28], see Fig. 2 (a). For our
semi-controlled real-world studies, we use a (mobile) Qualysis
system with a sufficient number of markers and cameras to
cover the motions in an area of interest as best as possible
(CEP95 ≤1 cm on average), see Fig. 3. In a post-processing
step, we linearly interpolate, re-sample, and synchronize the
reference data with the GAEN measurements. We analyze the
data visually and statistically and drop invalid measurements.

B. Experiment Design

Effects of Materials. We evaluate the effects of different
materials and surfaces. We disturbed the line of sight (LoS)
of two calibrated phones (i.e., combinations (Pixel 4; Pixel

4), (Pixel 4; S10+), (Pixel 4; A50), (A50; S10+)), by (1)
glass, (2) acrylic glass, (3) wall, (4) ceiling, (5) handbag, (6)
trouser pocket, and (7) winter clothing (wet and dry), each
with different orientations of the devices. We also investigated
the effect of different orientations such that the devices were
placed either with the front (display side) or with the back in
two different orientations to one another. A reference recording
with direct LoS between two phones (same combinations)
was recorded in advance to calculate the attenuation of the
LoS without interference. We varied the distance between two
phones (0.5, 1.0, 1.5, 2.0, 2.5 in [m]) with a fixed obstacle
between them ((1) to (4): 0.5 m and (5) to (7): 0 m).

Controlled Synthetic Experiments. To derive optimal pa-
rameters that generalize well to typical everyday contact situ-
ations, we designed a large-scale experiment with 9 different
synthetic scenarios. A robotic reference system r (see Fig. 2
(a)) autonomously follows a pre-defined path, and records
both GAEN contacts with an attached phone and synchronized
reference data. Each scenario is designed to mimic the typical
propagation environment of its real-world counterpart. Fig. 2
(b) shows an overview of the measurement area with the
different scenarios. The static smartphones are attached to
synthetic human bodies (5-liter bucket with windshield washer
fluid) at a location that is most likely for each scenario. The
NIKON iGPS system provides reference measurements.

Semi-controlled Real-world Experiments. To derive opti-
mal parameters for typical everyday contact situations and
human movement dynamics, we designed a large-scale, semi-
controlled experiment with 3 different real-world scenarios
with human participants. All of them were informed about
the aim and procedure of the study and gave written informed
consent for their participation. They wore a FFP2 mask during
testing and underwent a COVID-19 rapid test beforehand.
Each scenario is designed to mimic the typical propagation
environment of its real counterpart. A supervisor instructs
each participant on the individual schedule (exemplary shown
in Fig. 3). Markers of the reference system are attached to
helmets or caps worn by the participants who carry Google
Pixel 4a phones. Using the modified CWA and the Python
application, all measurements can be started and stopped syn-
chronously. See Tbl. I for a detailed overview of our controlled
synthetic and semi-controlled real world experiments.

V. RESULTS

We discuss the effects of materials on the Bluetooth attenua-
tion (Sec. V-A) before we present the parameters that we opti-

Fig. 3. Exemplary time course of our bus study. Colors indicate the individual
seating positions, (de)boarding- and travel times.
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TABLE I
DESCRIPTION AND STATISTICS OF EXPERIMENTS, SEE FIG. 4 FOR THEIR ILLUSTRATION. (TOTAL MEASUREMENT DURATION, TDUR). ONLY IN THE

SHOPPING CENTER AND ALL SEMI-CONTROLLED EXPERIMENTS ARE RANDOM PEOPLE INFECTIOUS, OTHERWISE IT IS ALWAYS r.
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Bar
Fig. 2 A

The robot (r) simulates a waiter moving to one or more passive synthetic participant (PSP) tables, talks to them
for a while, and leaves the table to switch to another. 29 13 1247

Queue
Fig. 2 B

Typical queuing situation, e.g., a cash register with 2 queues with 6 PSP each. The robot (r) simulates a shopper,
moves through the queue at different speeds and stops at different locations for different periods of time. 38 13 684

Dining Rest.
Fig. 2 C

40 PSP are seated at 14 tables and a waiter (r) takes orders, serves and picks up the customers’ dishes from
their tables. r moves randomly between the tables and waits for different lengths of time at each table. 7 40 784

Fairground
Fig. 2 A-E

A visitor (r) moves slowly through an exhibition and visits several exhibits in a random order. r waits for a
few min at each exhibit. 40 PSP were placed randomly (almost evenly distributed) to mimic other fair visitors. 12 40 840

Fast-food
Restaurant
Fig. 2 B+C

A guest (r) waits (for different periods of time per test run) at a service desk, eats at a randomly selected table
(for approx. the same time per test run) and then returns the tray. 28 PSP were evenly distributed on 14 tables
in the measuring area to mimic other people.

16 28 720

Large
Office
Fig. 2 A-D

An employee (r) works in an office, moves to the printer room, visits a colleague, moves to the meeting room
and stops in the kitchen. r waits for a different length of time in each room. 26 PSP are evenly distributed over
the area to mimic other people.

6 26 420

School
Fig. 2 E

A teacher (r) moves in front of a class and writes on the board (waits). The teacher walks through the class
rows and stops at each table for different periods of time. 26 PSP are nearby and are evenly distributed. 15 26 705

Crowd
Fig. 2 D

A person (r) moves randomly either in the middle or around a crowd, waiting in random places and for any
length of time. 37 PSP with phones in trouser pockets are evenly distributed on chairs to imitate other people. 37 37 1147

C
on

tr
ol

le
d,

sy
nt

he
tic

sc
en

ar
io

s

Shopping
center
Fig. 2 A-E

A person (r) moves naturally within a crowd and waits in random places for various periods of time. 17 PSP
are evenly distributed across the area to mimic other people. In contrast to the other scenarios, we attach 3
to-be-exposed mobile phones to r instead of one.

8 17 944

Bus
Fig. 4(a)

10 participants stood or sat and had the phone in their hands or in their pockets during a bus ride. Participants
were asked to take specific seats and to get on or off the bus according to the supervisor’s instructions. Not all
passengers adhered to the rules of social distancing, i.e., there are distances <1.5 m between participants.

7 10 201

Subway
Fig. 4(b)

This scenario covered 2 different conditions: static - 10 participants sit or stand still after boarding the subway;
dynamic - they get on and off randomly and move within the train. 15 11 344

Se
m

i
co

nt
ro

lle
d

Airplane
Fig. 4(c)

For each test run we varied: the positions of the phones of 20 participants and 4 PSP, e.g., table, bag, hand,
bag, and headrest, and the a priori defined seats. Random participants go to the toilet or take luggage from the
rack. We also included 2 crew services with drinks and food and random requests to the flight attendants.

3 22 277

TABLE II
RESULTS OF OUR EXPERIMENTS ON THE EFFECTS OF DIFFERENT MATERIALS AND SURFACES ON THE SIGNAL ATTENUATION

Material Acryl (0.05 m) Ceiling Coat Coat (wet) Glass (0.015 m) Wall (0.3 m)

Pose
B2B F2F B2B F2F B2B F2F B2B F2F B2B F2F B2B F2F

45 90 45 90 90 90 45 90 45 90 45 90 45 90 45 90 45 90 45 90 45 90

µ(max(e)) 3.6 3.8 3.4 3.6 43.4 22.4 3.8 4.2 4.7 4.9 6.7 5.7 7.0 7.7 9.0 12.4 20.8 14.5 15.1 14.8 23.6 18.0
σ(µ(max(e))) 1.7 3.7 1.9 1.6 2.6 1.9 1.5 2.6 1.5 3.2 2.0 1.1 2.3 5.5 1.3 1.6 4.1 2.2 2.2 2.5 3.8 2.4
µ(e) 1.0 1.4 1.4 1.4 10.8 5.6 1.0 1.6 2.8 1.6 3.1 2.5 4.2 2.9 5.4 7.8 14.6 10.4 10.4 11.2 18.9 13.8
σ(µ(e)) 0.5 1.2 1.1 0.7 0.7 0.5 0.5 1.5 0.7 1.0 1.1 0.8 2.1 1.8 0.9 0.6 2.6 2.1 0.5 0.4 2.8 2.5

Signal attenuation measured between devices with Back-to-back (B2B), Front-to-Front (F2F), and 45° or 90° rotation about the pitch-axis, and all errors e in [dB] w.r.t. to
device combinations (Pixel/Pixel, Pixel/S10+, Pixel/A50, A50/S10+) and distances (0.5, 1.0, 1.5, 2.0, 2.5 in [m]). Worst cases per material in bold. F2B and B2F combinations
are not listed as we saw that they are almost exactly between the respective F2F and B2B errors. We analyzed the data and removed outliers (negative or extreme values).

mized on both (semi-)controlled experiments (Sec. V-C). Next,
we discuss the specific results of the controlled (Sec. V-D) and
semi-controlled (Sec. V-E) experiments.

A. Effects of Materials

We found that the attenuation of various materials weakens
the signal strength of the transmitter by up to 43.4 dB.
Tbl. II shows the mean and the standard deviations of the
attenuation of the various materials averaged over approx.
n=1,000 measurements each. F2F attenuations are often worse
than B2B ones. We think this is due to the device specific

antenna pattern. The signal strength is also influenced by
the orientation of the phone. Orientations of 90° (antennas
aligned parallel to each other) almost always lead to far lower
attenuations than at 45°. The attenuation of glass depends
on both the material thickness and the type. The influence
of brick walls and concrete ceilings (0.6 m) is highest, as
these materials cause a high level of attenuation. (Wet) coats
also influence the signal strength. This suggests adjusting
parameters depending on the season to compensate for the
materials worn in cold periods.
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TABLE III
RESULTS OF OUR (SEMI-)CONTROLLED EXPERIMENTS. ∅ - MEAN AND σ -

STANDARD DEVIATION OF F1 , F2 , TP, FP, FN AND TN. THE CAPITAL
LETTERS IN EACH SCENARIO INDICATE THE SCENARIO AREA IN FIGURE 2.
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∅F1 0.83 0.5 0.88 0.53 0.59 0.55 0.46 0.74 0.78 0.81 0.75 0.48
∅F2 0.88 0.66 0.88 0.58 0.61 0.66 0.68 0.82 0.9 0.86 0.88 0.69

TP 239 104 173 59 95 23 44 670 744 361 275 195
FP 70 181 21 68 72 31 103 377 408 126 181 420
FN 25 23 25 36 59 7 0 88 0 40 0 2
TN 14 148 15 227 152 89 129 161 0 67 0 84

∅TP 8.24 2.74 28.83 5.9 6.79 3.83 3.67 18.61 1.94 5.01 11.46 2.6
∅FP 2.41 4.76 3.50 6.8 5.14 5.17 8.58 10.47 1.06 1.75 7.54 5.6
∅FN 0.86 0.61 4.17 3.6 4.21 1.17 0 2.44 0 0.56 0 0.03
∅TN 0.48 3.89 2.50 22.7 10.86 14.83 10.75 4.47 0 0.93 0 1.12
σTP 3.78 0.44 2.03 1.45 1.52 0.37 0.94 10.73 1.43 2.55 3.54 2.39
σFP 2.5 1.48 0.96 2.44 0.74 1.21 2.18 9.0 1.43 1.92 5.58 2.9
σFN 0.86 0.84 2.03 1.2 1.52 0.37 0 2.96 0 1.56 0 0.16
σTN 0.5 1.89 0.96 2.79 0.74 1.21 2.74 5.42 0 1.5 0 2.6

B. Optimized Parameters

In our material experiments, we found that the first direct
LoS path is influenced more by objects in the immediate
vicinity along the path than by walls at a great distance. Based
on our findings of the effects of materials, signal propagation
environment, and human movements, we thus propose to
derive general parameters based on (semi-)controlled exper-
iments that take into account all possible (static and dynamic)
types of obstacles along a transceiver line.

Based on the collected data from all of our experiments
and using Google’s attenuation calibration tables [27], the
following parameters yield the highest score based on our
epidemiological model and the chosen error metric: an=63dB,
am=73dB, af=79dB and wn=0.8, wm=1.0, wf=0.1, wvf=0.0
at ESCWA=9.0min. Attenuation values in the narrow range
Bn correspond to narrow exposures which are weighted with
wn=0.8. Likewise, mid-range attenuations Bm correspond to
narrow exposures and are therefore weighted with wm=1.0.
wf=0.1 reduces the influence in Bf and wvf=0 discards highly
attenuated values in Bvf, as they correspond to negligibly
large distances between devices. An EN is triggered if ESCWA

≥9 min within a single day (in contrast to ESEPI ≥ 10min).

C. General Insights

We measured a total of 6,431 contacts for the controlled
synthetic (4,680) and semi-controlled real-world (1,751) sce-
narios and found differences in the results between and within
the two scenario types. This indicates that a scenario-specific
parameterization would yield the best results. We first discuss
important findings of the individual scenarios of both experi-
ments (or groups of scenarios if they have a comparable study
concept, similar dynamics, and propagation environment or
show comparable effects). Although we have derived a general
parameter from all scenarios, we cannot compare them directly
due to their individual study design. Tbl. III shows the results.

Bars, Dining rest., Crowd, Shopping center, Bus, Air-
plane, and the Subway scenarios show high positive values
(TPrel+FPrel>80% with TPrel = TP/total contacts) that demand
high test capacity. Instead, Fairground, Large Office, and
Fast-food yield high negative values (TNrel+FNrel>55%). The
FPs for the experiments Queue, Large Office, School and
dynamic Subway (result not shown separately) are almost
twice as high as the corresponding TPs. These are side effects
of our general parameters and the F2-score, as low FNs come
at the expense of higher FPs. Since the main goal is to reduce
the FN rate, this is acceptable with sufficient test capacity.

The high TPs of the Bar, Dining rest., Shopping center,
Bus, and Airplane scenarios are caused by a longer exposure
time at a bar- or at a dining table (>1h), many infected people
shopping (≥3), and the particular propagation environment
(metallic tube) in buses and airplanes, which promotes signal
propagation. The highest FNrel (>9%) were obtained in Fast-
food, Dining rest., and Fairground. Some contacts were not
detected as the distances between people were often large and
contact times were short, as the scenarios are more static
with test persons sitting at the table or standing in front
of exhibits for a long time. In contrast, School, Shopping
center, Airplane and Subway yield the lowest FNs (≈0).
Almost every contact is correctly detected in the School and
Airplane scenarios. In the Airplane and Subway scenarios
the good propagation conditions cause almost all contacts
to be detected as positive. Instead, the Shopping center
scenario is very dynamic with moving people, which leads to
fewer contacts with shorter durations. However, all contacts
are correctly detected when customers stay in front of the
shop windows for a longer time. The separate evaluation of
the Subway scenario’s static and dynamic sub-tests shows
that more motion (dynamics) leads to shorter contact times
and possibly fewer TP and more TN contacts. In contrast,
the static variant leads to lower FN and high TP values,
which is in line with the Airplane scenario. The results
therefore suggest that there are differences between static and
dynamic scenarios. Thus, it would make sense to separate the
parameters according to static and dynamic scenarios, e.g.,
using motion classifiers.

D. Results of the Controlled Synthetic Experiments

We first address general findings, before we discuss individ-
ual clusters. The results show that most of the critical contacts
are correctly classified as critical cases (recall of 89%). In
contrast, the number of all FNs (=263) is relatively low
(TN=935). The highest ∅FNs are reported in the Fast-food
(4.21±1.52), Dining rest. (4.17±2.03), Fairground (3.6±1.2),
and Crowd (2.44±2.96) scenarios but with high variances.
In contrast, the other scenarios resulted in remarkably lower
∅FN values (<1.17) and variances (<0.86). The higher FNs
in these scenarios correlate with the density and amount
of people absorbing signals. Standing/sitting near infectious
subjects whose signal is shadowed can also lead to increased
FNs (compare the high FNs of the Crowd scenario). From
this we can follow that simple social rules, such as placing
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(a) Bus. (b) Subway. (c) Airplane (Airbus A321).

Fig. 4. Scenarios of our semi-controlled experiments. dc - close distance [<1.5 m], dm - middle distance [<2.5 m], df - far distance [<7.5 m].

the phone on the table (e.g., in Bar, Dining rest., School and
Office) or around the neck (e.g., in Queue, Shopping center
or Crowd) enables better LoS conditions and thus helps to
reduce FNs. Although we weight the FNs more heavily (thus
the FPs also increase), most scenarios still yield higher TP and
TN values. These findings are also reflected in the F2-scores,
that are below 70% in scenarios with high FPs and FNs.

The Bar and the Dining rest. experiments show that staying
at tables in a bar or restaurant yields high TP+FP values and
puts an additional load on the test capacity and results in higher
FN than TN values. We think that this may be caused by the
large distances between phones in these scenarios. The School
and the Queue scenarios show a low number of infections and
missed detections. While the detection is more accurate for
standing at the beginning or the end of a line, standing in the
middle of the line showed higher FN rates.

Even if the Dining rest. (∅FN=4.17) and Fast-food
(∅FN=4.21) scores show similar FNs, their FPs differ: FPs
in Fast-food (∅FP=5.14) are clearly higher than in Dining
(∅FP=3.5). The reason may be that in a dining restaurant typ-
ically less dynamic human bodies affect the radio propagation
environment than in a typical fast-food restaurant. Thus, the
dining scenario is more controllable and lowers the FPs.

The Fairground and Large office experiments show low
TPs and high TNs, this indicates a low risk of infection. We
think this is related to the rather high distance between phones
in the large measurement area in these scenarios. Yet, their FP
rate is higher than the TP rate which implies that our general
parameters are not best suited for these types of scenarios.

The results of the Fast-food experiment are worst: the high-
est FNrel=15.6±5.6% and a high unnecessary load on the test
capacity (FPrel=19.0±2.8%) across all experiments. We think
that this represents a Fast-food restaurant with more dynamic
human bodies affecting the radio propagation environment.
Thus, the scenario is less controllable and raises FP.

The results of our Crowd experiment show that standing
or moving around a crowd of people yields a low FN=0,
while moving in the middle causes a high FN=88 and a high
infection rate (TP=670). We think that moving in the middle
of the crowd of infected people is a very high risk, but it gets
even worse as we cannot detect all contacts.

The individual study design of the Shopping center
experiment allows no comparison to other scenarios (we
placed three to-be-exposed phones on the robot r and
random people were infected). Here, the highest num-

ber of true (TPrel=64.6±47.8%) and false infected contacts
(FPrel=35.4±47.8%) are generated. We think that the higher
FPs in a mall are caused by reflections from nearby objects
along the propagation path. These effects indicate again, that
a specific parameter set may be a better choice for such a sce-
nario. However, the low number of FNs and TNs compensates
for this. We think both the movement dynamics of people that
walk along or stand to look at the shop windows enable this.

E. Results of the Semi-controlled Real-world Experiments

In the semi-controlled scenarios the average recall (95%) is
higher (6%) than in the controlled scenarios. This is because
the in-between diversity of the propagation environments of
the semi-controlled scenarios is much lower than that of the
controlled and thus our general parameters perform better.
Across all semi-controlled experiments ∅FN is very low
(<0.6). Fig. 4(a-c) show examples of our scenarios for the
measured distances of the CWA and reference system.

The higher FN rate in the Bus scenario (FNrel=6.4±17.6%)
causes the lowest recall (90%). In comparison, the low FN
rates (≈0.0) in the Subway and Airplane scenarios result in a
high recall (≈100%). In contrast, the FPrel is significant among
the scenarios (p<0.01): this time Bus (FPrel=20.8±22.8%)
shows the lowest rate, and Airplane (FPrel=36.7±24.5%) as
well as Subway (FPrel=59.1±29.6%) show much higher ones.
Even if we split the Subway scenario into static and dynamic
sub-tests (with passengers getting on and off and movements
in the train), we see that both deliver highest FP values
across all three experiments. However, the three scenarios
highly increase the load of the test capacity (TP+FP). Bus
(∅FN=0.56±1.56) shows the highest FN value on average, but
also the highest variances since we measured both on the bus
and at the bus-stop. In contrast, the other scenarios resulted in
lower ∅FN values (around 0.0) and variances (<0.25).

Our test design could be responsible for the higher FN
scores in the Bus scenario because users were allowed to
put their phones in their pockets, some sat far away, and
others were not exposed long enough as they only traveled
for a short time. This is in contrast to the Subway and
Airplane scenarios, where the users are inherently encouraged
to place their phones in a (static) way that enables better
LoS conditions and thus, helps to sustainably lower the FN
(=0) rate. Interestingly, for Airplane there are no TNs. We
think the propagation environment of an aircraft contributes
to the signal spread and hence all contacts were detected
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to be positive, as they all underestimated the real distance.
Although we weight the FN values more heavily and thus
the FP values also increase, all scenarios (except Subway)
nevertheless yield higher TP and TN values. These findings
are also reflected in the F2-scores, which barely fall below
70% in the semi-controlled scenarios even for an excessive
number of FP as the FN values are very low. Interestingly,
the FP values for the Subway experiments are almost twice
as high as the corresponding TP values. When we split the
Subway scenario into static and dynamic variants we see that
dynamics in a subway reduce the FP rate gently at the cost
of slightly lower TP and higher TN rates. However, since the
main goal is to reduce the FN rate, even a static situation in
a Subway is not a problem if there is enough test capacity.

VI. CONCLUSION

We presented an extensive measurement campaign that was
carried out together with DT and SAP under the supervision of
the RKI to derive optimal parameters for a decentralized CT
(CWA from Germany) based on GAEN. We show that while
optimal parameters are application- and environment-specific
(and also depend on motion dynamics), our optimized general
parameters are a practical compromise between energy costs,
applicability, accuracy and reliability of the ENF. We show
that our parameters only lead to few false negatives.

However, care must be taken in scenarios where people
stay together closely, hence attenuate or reflect the signals
such that contacts are not detected. We suggest that scientific
studies should report a uniform metric based on calibrated
measurements, namely false negative results, i.e., an infected
contact was not detected, to enable better comparability of the
methods and parameters in the future.

Parameters have to be revised when epidemiological models
change, e.g. to cope with new variants of COVID-19 (Delta
variant, etc.). Furthermore, other respiratory diseases can be
tracked via CT protocols.
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