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Abstract—Many radio-based positioning systems use time-of-
arrival (ToA). We obtain it from the first and direct path of
arrival (FDPoA) in a corresponding set of multipath components
(MPC) of the underlying channel state information (CSI). While
detection of the FDPoA under Line-of-Sight (LoS) is simple, it
is prone to errors in environments with specular and diffuse
reflections, as well as nonlinear diffraction, absorption, and
transmission of a signal. Such Obstructed- or Non-Line-of-
Sight (OLoS, NLoS) situations lead to incorrect FDPoA and
consequently to incorrect ToA estimates and inaccurate positions.
State-of-the-art estimators are computationally expensive and
usually fail with O/NLoS at low signal-to-noise ratios (SNRs).

We propose a deep learning (DL) approach to identify optimal
FDPoAs as ToA directly from the raw CSI. Our 1D Convolutional
Neural Network (CNN) learns the spatial distribution of MPCs
of the CSI to predict correct estimates of the ToA. To train
our DL model, we use QuaDRiGa to generate datasets with
CIRs and ground truth ToAs for realistic 5G channel models.
We found that Delay Spread (DS), k-Factor (kF), and SNR are
appropriate metrics to cover most LoS-NLoS constellations in
realistic datasets. We compare our DL model with state-of-the-
art estimators such as threshold (PEAK), inflection point (IFP),
and MUSIC and show that we consistently outperform them by
about 17% for SNRs below -10 dB.

Index Terms—TOA Channel Parameter Estimation, Inflection
Point, MUSIC, Machine Learning, Deep Learning.

I. INTRODUCTION

Radio-frequency (RF) positioning relies on geometric re-
lationship between the positions of transmitters and receivers.
There are 3 main approaches [1]: Angle-of-Arrival (AoA), Re-
ceived Signal Strength (RSS), and ToA. While AOA requires
expensive directional antennas or antenna arrays [2], [3] RSS
struggles from significant fluctuations over short distances and
over time [2], [4], ToA relies on the efficient estimation of
the time-of-flight and typically provides position accuracy in
the centimeter range with good propagation conditions [3].
In a typical RF positioning system, several synchronized
transceiver pipelines provide sets of channel impulse response
(CIR) data, of which ToAs are estimated, which are then used
for positioning tasks. However, a reliable ToA estimate is a
challenge as it is a compromise between the legal (feasible)
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Rough ScattererDense Diffuse
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Blockage
RX2

Reflection
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Fig. 1. Multipath propagation scenarios with specular and dense multipaths
and respective LoS, OLoS, and NLoS (red: affected; green: unaffected).

transmission power, the available bandwidth, and the size of
the propagation environment. Fig. 1 shows 3 typical scenarios:
A transmitter TX (right) emits a radio burst that travels through
the environment to reach different receivers RX (left): LoS,
NLoS, and OLoS. For the (green) LoS case, as the direct path
and so the first and strongest peak in a CIR are not affected
by a MPC, naive methods easily identify the correct FDPoA,
i.e., ToA [5]. However, in the OLoS and NLoS cases, a path is
affected by absorption, diffraction, reflection or transmission.
For OLoS the direct path is difficult to distinguish from MPC
components. And for NLoS the FDPoA is no longer available
as it is significantly delayed and attenuated. In such practical
cases it is difficult to estimate the true ToA from the CIR [6].

Previous work estimates the ToA from multiple peaks in the
CIR by selecting the maximum peak [7], applying thresholds
along with the SNR and power w.r.t. the strongest peak [8]
(PEAK), or by estimating the peak based on the maximum
gradient along the first rising edge w.r.t. the inflection point
(IFP) [9]. However, they do not work well, since multipath vi-
olates their core assumptions and their performance decreases
with the SNR. In contrast, the high-resolution MUSIC [10],
ESPRIT [11], RARE [12], SAGE [13], and RiMAX [14]
methods estimate correct ToAs in the frequency and time
domain, especially in multipath scenarios [7]. However, they
require channel-specific a-priori information and their imprac-
tical computational complexity increases with the number of
MPCs [10]. Recent DL [15] methods estimate the position
directly from CIRs or derive parameters such as ToA [16],
[17]. However, they only work for the training environment.978-1-6654-0402-0/21/$31.00 © 2021 IEEE
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We propose a DL-based ToA estimator, as well as a training
concept with synthetic data including metrics that simplify
its deployment. The novel concept generates comprehensive,
realistic synthetic data to implicitly identify and mitigate errors
in ToA estimation in LoS, OLoS, and NLoS radio propagation
environments by learning a mapping of synthetic CIRs to
ToAs. The key ideas are to simulate the distributions of
all realistic CIRs and their corresponding FDPoAs as ToAs
for a variety of typical 5G channel models and to use the
interpolation capability of an adequate CNN to reduce the cost
of the data acquisition process. We propose a metric of 4 pa-
rameters for QuaDRiGa that represent every possible realistic
MPC distribution and enable the generalizability to unknown
propagation environments, represented by different bandwidth,
DS, Ricean kF, and SNR. Our experiments show that our DL
approach outperforms state-of-the-art methods such as PEAK,
IFP, and MUSIC at SNRs below -10 dB by about 17% on
average. Unlike PEAK and IFP, our method is not limited to
individual parameters as it learns all possible parameters from
data. And unlike MUSIC, its performance does not deteriorate
with the number of MPCS. In contrast to existing DL-based
methods, our approach generalizes to unknown propagation
environments and reduces data acquisition costs.

The rest of this paper is structured as follows. Sec. II reviews
related work. Sec. III describes the problem. Sec. IV intro-
duces our novel architecture. Sec. V describes our experiments
and discusses the results. Sec. VI concludes.

II. RELATED WORK

Related work estimated positions directly from CIRs [1],
[15] or from channel parameters (CP) such as AoA [2], [3],
RSS [4], ToA [2], [18] or combinations thereof [3]. Since
these end-to-end methods require an expensive data acquisition
campaign and estimate environment-specific positions and so
do not generalize to other environments, we will only discuss
model-(Sec. II-A) and data-driven (Sec. II-A) CP estimators.

A. Model-driven CP Estimation

Guvenc et al. [7] use the maximum peak of the correla-
tion function as ToA. Similar threshold-based methods use
fixed SNR and power values [8]. However, the handcrafted
parameters only work reliably in LoS situations. Instead, the
IFP method [9] estimates the peak based on the maximum
gradient along the first rising edge. This helps to account
for the peak detection errors caused by MPCs with similar
delays. Although IFP is an improvement over PEAK, it still
suffers from multipath and low SNRs. Thus, to estimate correct
ToAs even in multipath scenarios, high-resolution algorithms
were proposed [6], [19]: subspace-based algorithms such as
ESPRIT [20], MUSIC [21], and RARE [12] or SAGE-based
methods [13]. However, only the maximum likelihood-based
RiMAX [14], [22] methods integrate diffuse multipath scat-
tering effects into their model and so surpass others [23].
Although these super-resolution techniques increase the time-
domain resolution and thus estimate ToAs more accurately
in multipath environments, their computational complexity

increases significantly, making them impractical for many real-
world applications [24]. In contrast, our data-driven method
only estimates a single relative ToA, thus keeping the compu-
tational complexity low, is not limited to a predefined number
of paths and therefore generalizes to other environments.

B. Data-driven CP Estimation

Others used supervised DL methods to extract CPs from
CSI [16]. Wang et al. [25] trained a CNN to estimate AoAs
from phase fingerprints. Comiter et al. [26] derive AoAs from
two NNs that estimate the antenna beam. In contrast, we focus
on ToA estimation as it typically yields higher accuracies in a
downstream positioning task [3]. To the best of our knowledge,
only Sun et al. [17] examined DL to directly estimate ToAs
from CIRs. In (LoS) experiments with wired and radio trans-
mission, they showed that their expensive data acquisition pro-
cess offers higher accuracy and less computational effort at low
SNRs than state-of-the-art methods at the cost of practicability.
However, since they did not report important details about
their experimental setup, the reproduction and quantitative
comparison are impossible. Since their CNN architecture uses
max pooling, that negatively impacts the time-critical feature
extraction process [27], we do not evaluate their method. We
derive our computationally efficient DL model on synthetic
data to reduce data acquisition costs and to generalize it to
combinations of synthetic and real random LoS and NLoS
MPCs. We also report on reproducible parameters that we
derive from real-world propagation scenarios and that best
cover realistic channel models [28].

III. PROBLEM DESCRIPTION

Typically, we estimate a ToA from a CIR that is extracted by
decorrelating a received signal with a known pseudo-random
sequence. Each MPC of a CIR describes the influence of path-
loss and material interactions for a particular signal path. The
ToA estimator identifies the delta time, i.e., the relative ToA,
that corresponds to the FDPoA from a CIR. The distances
between multiple transceiver lines are then determined using
the speed of light to multilaterate a position.

However, CIRs differ considerably in a bandwidth limited
channel, since the decorrelation leads to a significant overlap
of the spatial information of the CIR and smears different
impulses with one another. Thus, under multipath propagation
the CIR contains many different (nondeterministic) MPCs.
The limited temporal resolution limits the accuracy of ToA.
Hence, extracting the information that represents the correct
ToA is challenging and the expected ToA estimation perfor-
mance depends on the overall channel statistics, which in turn
depends on the environment and the deployment parameters.
The root-mean-square DS and the Ricean kF characterize a
CIR. These statistical parameters are derived from channel
measurements and best describe the propagation conditions
within any environment. DS and KF are both environment-
dependent and are modeled by statistical distributions. The
KF indicates how many MPCs negatively affect the FDPoA.
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Fig. 2. CIR and related correlator output (Corr) of different delay spreads (red: unlimited bandwidth; blue: limited bandwidth).

The DS indicates the delay between the MPCs that influence
the FDPoA most positively and negatively.

Figs. 2(a-c) show the effects of (bandwidth limited) DS on
the magnitudes of three CIRs: (a) the CIR contains only a
single LoS MPC (red) and its correlation signal Corr (blue);
(b) shows a single cluster of CIRs that form a single peak
in Corr. Instead, Fig. 2(c) shows multiple clusters that form
three peaks in the magnitude of Corr w.r.t. the CIR.: the first
cluster, an OLoS case, in which the FDPoA is less delayed
but also weaker due to diffraction and transmission, see also
the paths between TX − RX3 in Fig. 1; and the second and
third clusters, several NLoS cases, are higher delayed but are
more powerful due to reflection and scattering, see also the
paths between TX −RX2 and TX −RX3 in Fig. 1. We see
that higher DS yields more MPCs clusters, and worsens the
identification of the correct FDPoA. Of course, high DS and
low KF values represent a worst-case situation to estimate a
correct FDPoA. This becomes worse with lower SNRs.

IV. METHOD

A. Processing Pipeline of our Framework

Urban, industrial, and other environments with many ab-
sorbing, specular, and diffuse scattering and reflecting objects
increase the variety of propagation paths and MPCs and thus
increase the ToA estimation error. Bandwidth and transmission
power limitation also worsen the situation. Our DL-based
approach identifies correct FDPoAs even in these complicated
scenarios, as it learns the complex spatial correlation of MPCs
from snapshots of CIRs. Fig. 3 shows our pipeline: We train
our models to map a CIR to a corresponding reference ToA. To
train and evaluate our models, we use QuADRiGa [29] to gen-
erate training, validation, and test data with real-world channel
statistics that represent predefined [28] propagation conditions
for every possible environment. We sample different (µ and
σ) combinations of KF and DS together with a varying SNR
to generate a variety of realistic CIRs and reference ToAs.

B. Data Acquisition

3GPP TR38.90 [28] defines realistic reference channel
models that describe small scale parameters (SSP), DS, KF,
and Doppler and large scale parameters (LSP), path loss and
shadowing. SSP and LSP define the statistical properties of
corresponding CIRs with probability density functions (PDFs)

for DS and KF to represent the properties of a random realistic
environment w.r.t. LoS, OLoS, and NLoS conditions, the
number of relevant reflectors, and the (distance to reflecting)
objects around the transmitter. A detailed overview of the
statistics for KF and DS are shown in Figs. 4a and 4b.
Since KF and DS are typically correlated, we visualize their
joint PDFs with pseudo 3D plots, wherein the probability is
represented by the color, see Figs. 4c and 4d.

To generate realistic synthetic data we use the geometry-
based stochastic channel model QuADRiGa [29]. QuADRiGa
consists of a stochastic component, that creates a random
propagation environment and random 3D positions at constant
velocity of fixed scattering clusters within, and a deterministic
part, that describes the interaction of transmitters and receivers
within this environment over time. QuADRiGa’s realism was
validated based on real measurements in a coherent LTE Ad-
vanced Testbed [29], QuADRiGa Ind. in Fig. 4a. QuADRiGa
determines the channel coefficients and yields CIR and ToA.

C. Datasets

To enable generalizability of DL models, we avoid envi-
ronment and implementation-specific training datasets. Thus,
we created a composite dataset that covers various scenarios
as subsets. Each subset is generated using a specific SSP/LSP
table that represents a realistic underlying channel statistic. We
describe our synthetic urban, indoor, and real-world datasets
with distributions of µ(KF ), µ(DS), their σ, and SNR.
The urban macro (UMa) scenario assumes high basestation
(BS) towers, with high DS, and areas with narrow streets.
The urban micro (UMi) assumes dense deployments of the
BS, with medium DS, and rural areas. Fig. 4c visualizes
the map that covers the channel characteristics of UMi. The
indoor factory InF dataset with low DS represents typical
indoor industrial (factory) applications [30]. Instead, indoor
open office (InO) assumes open environments and includes
more data [28]. Fig. 4d visualizes the map that covers the
channel characteristics of InF. Fig. 5a shows the complete
map of the channel characteristics UMa, UMi, Inf, and
InO. We generated similar maps for our real-world data, see

QuaDRiGa
Channel 

Configurations CIR DL Model
X Yµ,σ

relToASN
R

D
S

K
F

Fig. 3. Processing pipeline of our framework.
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Fig. 4. PDFs and joint PDFs of DS and KF for the 3GPP (TR38.901) scenarios: InF, InO, UMa, UMi, and QuaDRiGa Ind.

Fig. 5b. We derived the statistics by analyzing data from a
real measurement study of a typical indoor scenario. Our real-
world system generates 200 CIRs per second on 16 RX for
one TX in the ISM band of 2.4 GHz with a bandwidth of
80 MHz [15]. The real data are part of the subsets InF and
InO, compare how the synthetic map in Fig. 5a covers the
entire map of the real indoor scenario in Fig. 5b.

Since we vary the CIR properties within a certain en-
vironment, we enable the selection of the suitable training
dataset for application-specific environmental conditions. Our
synthetic and real maps visualize and ensure that the synthetic
training data contain the channel properties of a real target
environment. In this way, a DL model that is trained on
the entire training data generalizes and we avoid complex
scenario-specific training during a system deployment phase.

D. Data Pre-Processing

To evaluate our models on the trade-off between information
gain, accuracy, and computational effort, we pre-process the
input data in 4 variants: 2 work on 1D sequences of CIRs
with dimensions of 60 samples over time (width, w=60 and
height, h ∈ [1, 2]) and 2 work on 1D sequences of resampled
CIRs with dimensions w=120 and h ∈ [1, 2]. We resample
the input sequence X at p/q times the original sampling
rate of 60 (with upsampling p=8 and downsampling q=1).
So we insert zeros to increase the signal by p=8. We apply
a FIR anti-aliasing lowpass filter to the upsampled signal
(normalized cutoff frequency fc=π/max(p, q) and gain p).
We approximate the anti-aliasing filter with the Kaiser window
method (filter order is 2×n×max(p, q), w. n=50 and shape
parameter β=5). We discard samples by q=1 to downsample
the filtered signal. We shift the signal in time to compensate
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(a) Simulated data.
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(b) Real data.

Fig. 5. Distribution of channel characteristics for simulated and real data. The
rectangles and circles classify UMi, UMa, and Indoor models spatially in this
world map. Note that rectangles represent the area covered by the parameters
µ(KF) and µ(DS), and the circles represent their corresponding σ.

for the delay introduced by the FIR filter. In the case of h=1
we compute the magnitude vector of I, Q, whereas in the case
of h=2 we use the raw I, Q vectors.

E. Data-driven Main-Processing

The key idea is that a DL-based method learns to identify
spatial correlations of MPCs of different propagation scenarios
that cover any realistic channel configuration to provide correct
FDPoA (i.e., ToA) predictions. We formulate the problem of
mapping a CIR to a ToA as a supervised regression problem.
During a training phase, the model learns to map the data
sequence (CIR) to a corresponding ToA. At the inference time,
the model then predicts a ToA from an unknown CIR.

Model Selection. In a preliminary study, we evaluated
models such as Linear and Gaussian Process Regression,
SmallNet [15], ResNet18 [31], and RNNs [31], CNNs [17],
and their combination. In a large scale grid search1, we
optimize each architecture and parameters on each of the 4
input variants to find the architecture that does not require
local pooling, minimizes under- and overfitting, and yields the
lowest ToA error on stratified randomized training data [32].
Since our study revealed that our 1D-CNN, inspired by tem-
poral CNNs [33], offers both the highest computing efficiency
and the highest accuracy, we only discuss it in detail below.

Final Model Architecture. 100 1D-convolution filter ker-
nels k detect 100 potential features and achieve the highest
accuracy. A k=10×1 (for 60x1 input, respectively k=10×2
for 120x2) kernel slides alongside 99 others, directly on a 1D
input sequence. They yield an output array, i.e., feature map
fm, with dimensions: input dimension-ks+1. 4 conv. layers
yield the highest accuracy. To transform an input sequence to
the first conv. layer (CL1), n=100 filter kernels of size k=10x1
(respectively 20x2 for inputs with dim. 60x2 and 120x2) slide
through the input sequence of length 60 for 51 steps (=60-
10+1). This results in an output array of fm=51 × 100 of
CL1. We apply the same number and size of k to process
each CL(1-4) and obtain the following architecture: CL1
(fm=100x51), CL2 (fm=100x42), CL3 (fm=100x31), and
CL4 (fm=100x24). Instead of a pooling we use a dropout
layer (dropout rate dr=0.2) to prevent overfitting before we

1Grid Search for our 1D-CNN: Number of Conv. Layers: 4 ∈ [1 : 1 :
20], residual layer in-between ∈ [yes, no], k=10 ∈ [2 : 1 : 20]x1, x2,
number of kernels: 100 ∈ [1 : 10 : 200], dr=0.2 ∈ [0 : 0.1 : 0.9], lr
∈ [0.0001, 0.001, ..., 1.0], activation ∈ [relu, sgd], epochs ∈ [early stopping
w. patience=3, max. 1000], optimizer ∈[adam, rmsprop]. Bold text highlights
the configuration that yields the highest accuracy on S5 that we use in Sec. V.
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TABLE I
RESULTS OF OUR EXPERIMENTS S1: AWGN, S2: UMI, S3: UMA, AND S4: INDOOR.

S1: AWGN Error [ns] S2: UMi Error [ns] S3: UMa Error [ns] S4: Indoor Error [ns]
CEP50 CEP75 CEP95 MAE RMSE CEP50 CEP75 CEP95 MAE RMSE CEP50 CEP75 CEP95 MAE RMSE CEP50 CEP75 CEP95 MAE RMSE SNR

PE
A

K 0.90 1.10 1.39 1.24 1.36 1.74 2.73 2.74 2.66 2.92 2.91 3.31 3.76 3.45 4.36 3.35 3.99 4.84 4.70 5.84 +20
1.82 2.11 3.62 3.45 3.93 2.47 3.55 4.96 4.45 4.64 3.43 4.29 5.52 4.86 5.42 4.84 4.94 6.35 5.64 6.76 +10
5.12 7.11 11.23 8.54 12.67 - - - - - - - - - - - - - - - 0

IF
P

0.89 1.08 1.32 1.17 1.31 1.53 2.34 2.83 2.75 2.89 2.46 3.45 4.56 4.16 5.34 3.33 4.12 5.84 5.42 6.66 +20
1.45 2.08 2.45 2.23 2.67 2.91 3.63 3.97 3.51 3.84 4.36 5.32 7.31 6.50 7.35 5.45 6.86 8.45 7.55 8.74 +10
3.23 4.34 5.23 4.65 6.56 4.76 5.66 6.87 5.34 7.97 9.25 10.58 12.81 11.63 13.14 9.53 11.33 12.85 12.74 14.66 0

M
U

SI
C 0.91 1.12 1.31 1.27 1.34 1.65 2.43 2.65 2.21 2.87 3.85 4.27 5.47 4.79 6.58 4.86 5.46 6.38 5.96 7.86 +20

1.51 2.11 2.45 2.23 2.67 2.67 3.34 4.79 3.65 3.72 4.36 6.14 8.47 7.74 8.25 5.55 7.87 9.46 8.66 9.54 +10
3.56 4.12 5.89 5.78 7.34 4.43 5.76 6.23 6.21 8.34 9.84 11.52 14.36 13.41 14.41 10.92 12.76 15.99 14.79 15.45 0

D
L

0.90 1.15 1.33 1.23 1.48 1.62 2.34 2.67 2.54 2.73 1.92 2.46 3.61 3.25 3.61 2.27 2.64 3.88 3.76 3.85 +20
1.23 1.34 2.23 2.12 2.43 2.23 2.87 3.54 3.43 3.96 2.36 3.01 3.85 3.58 3.90 2.73 3.16 4.28 3.98 4.13 +10
1.67 2.78 2.96 2.94 3.75 2.47 3.32 4.51 3.78 4.65 2.52 3.36 4.53 4.26 4.47 2.91 3.46 4.77 4.25 4.45 0
2.32 3.65 4.78 3.65 4.76 3.56 4.34 5.23 4.67 5.98 3.84 4.72 5.37 5.14 5.56 3.34 4.07 4.96 4.74 5.86 -10
3.45 4.11 5.97 4.86 6.84 4.34 5.56 6.38 5.45 7.56 4.41 5.76 6.41 6.01 6.43 3.72 4.56 5.89 4.88 6.73 -20

apply a fully connected layer to flatten its input. ADAM [34]
and the root mean square error (RMSE) loss function optimize
the regression layer to predict ToAs.

V. EVALUATION

We discuss the ToA error, i.e., identification error of the
FDPoA in ns=0.30 m, in terms of mean absolute error (MAE),
the circular error probabilities (CEP) of 50%, 75%, and 95%,
and the RMSE for each experiment w.r.t. varying SNRs in
Tables I and II [35]. We report best results in bold. Our grid
search provides optimized versions of PEAK [7], IFP [9], MU-
SIC 2 [6], and DL. For fair comparability and reproducibility,
we evaluate these publicly available methods, as preliminary
studies showed the lowest computational effort (PEAK, IFP)
and highest accuracy (IFP, MUSIC). For SNR< 0 dB they
did not yield plausible results. We visualize the errors as
cumulative distribution functions (CDFs) and error world map
graphs, i.e., a heatmap of ToA errors (in ns), see Fig. 7.

For all experiments, both (S)ynthetic and (R)eal-world, we
split each dataset into 60% for training, 10% for validation,
and 30% for testing based on a fixed random seed from
evenly distributed random samples. For a fair comparison,
we only show the results on the test datasets. We evaluate
the ToA estimators on individual and combined synthetic
datasets (Sec. V-A) and the importance of KF on their accuracy
(Sec. V-B). We also evaluate their ability to interpolate missing
data (Sec. V-C) and to generalize to the real-world (Sec. V-D).

A. Synthetic Experiments

We evaluate the ToA error of all methods for individual
synthetic datasets with channel configurations: S1 (AWGN),
S2 (UMi), S3 (UMa), and S4 (InF). Each of these datasets
contains 3,202,000 training samples (1601×2000 uncorrelated
QuADRiGa drops that provide random motion sequences with
a constant acceleration of 2 m/s2) and 1,601,000 test samples
(801×2000 uncorrelated sequences). We also combine S1 to
S4 in dataset S5 to assess the generalizability of the methods.

2For MUSIC, we use the MDL algorithm [36] to determine the number of
signals and we derive full-rank matrices according to Pillai et al. [37].

For each of the 5 experiments we optimized, trained, and
evaluated all methods for different SNRs.

S1: AWGN. S1 represents a typical AWGN channel [28]
with KF: µ=0.1, σ=1.1, and DS: µ=0.2, σ=2. At SNR≥0,
all methods perform similarly (SD=0.53 ns). At SNR=20,
PEAK and IFP outperform DL. This is to be expected as
both PEAK and IFP simply separate peaks (FDPoAs) from
the noise floor, while MUSIC and DL also simply optimize
their mapping. However, at lower SNRs, DL performs best,
and with SNRs<0, only DL yields plausible results at all.

S2: UMi. Fig. 5a shows the channel configuration that
S2 covers. The (red) rectangular area represents the µ of
KF=[8.4,−11] and DS=[−8.82,−6.62], while the (red) circle
represents the σ of KF=[2.2, 7] and DS=[0.03, 0.54].

On average, all methods provide lower accuracies on S2
than on S1, since the impact of KF and DS increases signifi-
cantly. The results show that at SNR≥0 all methods increase
in error, but the error varies between the individual methods
(SD=2.87). Interestingly, both PEAK and IFP keep up with
MUSIC and DL at SNR=+20. However, PEAK yields im-
plausible results at SNR≤0. At SNR≤+10, DL outperformed
all other methods. This is caused by the NLoS density, the
smaller KF, and larger DS values. We found similar effects in
the synthetic experiments S3 to S5.

S3: UMa. Fig. 5a shows the channel configuration, that S3
covers, in green: µ of KF=[7, 9] and DS=[−7.76,−6.44] and
the σ of KF=[3, 5.7] and DS=[−7.76,−6.44].

The error behavior of all methods is similar to that of
S2. The ToA errors are slightly higher on average than for
S1 and S2. This is caused by the increase in NLoS density,
the decreasing KF, and much larger DS values. At SNR≥0,
all methods increase the error. However, their errors differ
amongst them (SD=3.34 ns). Again, PEAK returns implau-
sible results at SNR≤0. In contrast to S1 and S2, DL always
yields the highest accuracies. At SNR=0, IFP (7.35 to 13.14)
and MUSIC (8.25 to 14.41) showed a significant increase in
the RMSE. For DL there is no such strong effect (3.90 to
4.47). At SNR≤ 0 DL outperformed all others by about 160%
(RMSE: IFP=7.35; DL=4.47). Again, at SNR<0, DL is the
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Fig. 6. CDF of IFP, MUSIC, PEAK, and DL methods on S6.1 (a), S6.2 (b), and S6.3 (c), each with SNR= 0 dB for different KFs.

only method that yields plausible results.
S4: InF. Fig. 5a shows the channel configuration, in

white: µ of KF=[−15, 10], and DS=[−8.25,−6.45] and σ of
KF=[0.2, 3.1] and DS=[0.76, 0.44].

The ToA errors slightly increase on average over S1 to S3.
Similar to S2 and S3, the errors of all methods increase almost
linear from SNR=20 to SNR=0. This is caused by the very
high NLoS density, the very small KF, and very large DS
values. Again, at SNR≥0, IFP (8.74 to 14.66) and MUSIC
(9.54 to 15.45) show a strong increase of the error, whereas
PEAK returns implausible result, and DL shows no significant
error (3.85 to 4.45). However, all results for each method
w.r.t. SNR are less consistent than in S1 to S3 (SD=4.11 ns).
Similar to S3, DL always yields the lowest errors. Although
DL also slightly raises the error w.r.t. SNR, DL at SNR≥0
outperforms all others by more than 210% (RMSE: IFP=14.66;
DL=4.45). And at SNR<0), only DL yields plausible results
at all, as it separates MPCs from the noise floor.

S5: Combination of AWGN, UMa, UMi, InF. We
combine S1 to S4 to create the new dataset S5, to investigate
whether a DL model trained on S5 yields more accurate ToAs
as it may learn the properties of all channel configurations.
This time we cannot report the performance of PEAK, IFP, and
MUSIC as they require an individual channel configuration
to return plausible results. S5 consists of 12,808,000 samples
for training and 6,404,000 samples for testing (60%/10%/30%
split). Fig. 5a shows the entire area (S1 to S4) of data.

Interestingly, the S5 experiment yields, on average, an
accuracy similar to that of S4. One reason for this is that
S4 already covers a large part of the entire area. Thus, similar
to S4, the error of DL increases almost linearly. Similar to S1
to S4, the results show that the error increases with increasing
SNR. All errors are slightly higher in S5 than in S4 (RMSE
from 5.04 to 5.78). This implies that more knowledge (data)
does not necessarily provide more accurate estimates, as the
data in S5 are much more diverse and sparse than in S4.

Conclusion w.r.t. Execution Times: S1 to S5 show that
PEAK (inference time3of 0.7 ms per CIR) and IFP at high
SNRs=20 perform quite well, as they simply detect FDPoAs.
IFP and MUSIC perform similar at high to medium SNR
(+20 to +10). However, we recommend IFP (1.9 ms) as
it runs much faster than MUSIC (52,000 ms). DL yields
similar accuracies at high SNRs, but it outperforms others at

medium to low SNR (0 to -20) with acceptable inference times
(5.3 ms). Hence, we recommend DL with decreasing SNR, if
the channel configuration (i.e., environment) are known, since
its first layers extract shapes and patterns of different FDPoAs
best and its deeper layers distinguish them from OLoS and
NLoS MPCs and the (diffuse) noise floor with little error.

B. Importance of KF in Indoor Environments

Results of S1 to S5 show that with a lower KF and higher
DS, i.e., with stronger MPCs, the performance of all methods
decreases. DS correlates with the bandwidth and does not
affect our experiments with fixed bandwidth. To investigate
ToA errors w.r.t. variations of only KF, we evaluate all
methods on special subsets of the challenging S4 dataset: 3
intervals of KF split S4 to create 3 types of datasets: S6.1
(KF>10), S6.2 (KF≤0), and S6.3 (all KFs). For reasons of
fairness and comparability, we have optimized and trained all
methods for subsets of S6.x scenarios with KF≥0.

Figs. 6(a-c) show CDFs of the ToA errors (ns) of all meth-
ods on the 30% test datasets from S6.x. At KFs>10 (S6.1),
all methods work equally well. In contrast, at KF≤0 (S6.2),
DL performs better than the others. With all KFs (S6.3), the
results are more accurate than with S6.2, as S6.3 contains
many KF> 0, which has a positive effect on the overall
result. However, S6.3 is still worse than S6.1. Fig. 6(d) shows
the CDF80 accuracy of the methods across different KFs. At
KF>10 (right), all methods work similarly. At KF<7.5, DL
always outperforms the others and Peak always yields the
worst results. At KF<5, Music slightly outperforms IFP. At
KF<0, PEAK already yields implausible results. We think
that DL for S6 as with S1 to S5 uses its ability to precisely

3We measured the average inference time over all test samples of S1,
processed with an Intel Core i7 1×3.6 GHz, excluding data load times.

TABLE II
RESULTS OF S5: COMBINED DATASET EXPERIMENT.

Method Error [ns]
CEP50 CEP75 CEP95 MAE RMSE SNR

DL

2.46 2.82 3.84 3.99 4.72 +20
2.96 3.32 4.31 4.47 4.56 +10
3.17 3.63 4.87 4.66 5.26 0
3.43 3.95 4.92 5.06 6.91 -10
3.81 4.47 5.99 5.27 7.45 -20
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Fig. 7. ToA error map that shows the correlation of KF, DS, and SNR on S5 and an SNR = 0 dB.

extract, memorize, and interpolate complex inter- and intra-
dependencies of MPCs in CIRs. However, it is unclear how
well DL performs when the noise floor completely hides the
MPCs. Figs. 7(a-d) support these results and show the ToA
error distribution as a heatmap over KF and DS. We conclude
that a lower KF and a higher DS result in a higher error for
all methods, with DL having the lowest error variance. The
diagrams from left (a) to right (d) show that the error decreases
with the complexity of the method from PEAK to DL.

C. Generalization

PEAK, IFP, and MUSIC cannot generalize to unknown
channel characteristics as they require individual adaptation
to work correctly. To examine the generalizability of DL to
unknown data, we consider two experiments: G1 and G2.

G1: General Interpolation Ability. We investigate whether
DL interpolates between 2 general channel configurations
(see Fig. 8). We use the test data (-7.75<DS<-7.5 and -
10>KF>10) from the framed area and the remaining data
for the training (-7.75>DS>-7.5 and -10>KF>10) from S6
at SNR≥0. Thus, we test whether DL interpolates between the
left and right side (KF) and the upper and lower side (DS).

For SNR=20, DL returns lower errors (CEP50=1.23,
CEP75=2.56, CEP95=3.33, MAE=2.89, RMSE=4.84) than for
SNR=0 (CEP50=1.87, CEP75=2.99, CEP95=3.78, MAE=3.89,
RMSE=5.66). The results suggest that DL interpolates quite
well between known data distributions, as the error increases
only slightly compared to the original results from DL on
S6 (RMSE at SNR=20: +0.22; RMSE at SNR=0: +0.40).
Thus, DL (re)constructs (new) channel models if it learns
surrounding information in the training phase.
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Fig. 8. Joint PDFs for the generalization benchmark (dataset split into data
covered by the black rectangle and the remaining data).

G2: Specific Interpolation Ability. To also investigate
whether DL processes unknown channel configurations, we
trained with the S2 (UMi) dataset and tested with S3 (UMa),
see Fig. 5a. Thus, as S2 (UMi) and S3 (UMa) overlap (similar
to G1), we test if DL interpolates between them.

For SNR=20, DL returns lower errors (CEP50=1.35,
CEP75=2.51, CEP95=3.31, MAE=3.76, RMSE=3.87) than for
SNR=0 (CEP50=1.41, CEP75=2.98, CEP95=3.41, MAE=3.72,
RMSE=4.52). Hence, DL may interpolate and reconstruct a
gap in a data distribution. The results also show that DL
predicts almost as accurate (SD<0.16 ns) as in S3.

D. Real-World Applicability

In OLoS and NLoS scenarios, it is expensive to obtain a
reference FDPoA. Thus, this experiment evaluates whether DL
(trained on realistic synthetic data) predicts accurate ToAs on
real-world data to reduce the data acquisition cost. We derive
a high KF (>0) and a low DS (<7.75) from the real-world
LoS-NLoS Rectangles dataset [38]. From there we estimate
channel properties, configure QuADRiGa, and generate data.
Fig. 5b shows that the synthetic environment covers the real-
world data completely. We also derive the reference ToArel

of LoS measurements of the Rectangles.4 We randomly select
10,000 LoS samples for training and 82,724 for tests. The
training procedure is unchanged, only the maximum training
epochs (= 100) are fixed for better comparability.

DL (pre-trained on synthetic data) on synthetic test
data shows slightly lower errors (CEP50=0.98, CEP75=1.21,
CEP95=1.65, MAE=1.42, RMSE=2.13) than for S5. The
same DL model results in higher accuracies (CEP50=0.51,
CEP75=0.72, CEP95=1.08, MAE=0.53, RMSE=0.64) on real
test data than on synthetic test data. We think this is as the
synthetic scenario is more complex than the real scenario and
covers all types of the real FDPoAs. However, retraining the
entire model provides the highest accuracies (CEP50=0.001,
CEP75=0.001, CEP95=0.007 MAE=0.004, RMSE=0.022).
Instead, resetting or freezing parameters or layers results in
worse accuracy and unstable training. And the training from
scratch, with randomly mixed (batches of synthetic and real)

4We subtract the arrival (start) times of the correlation windows CIR1
abs

of RX1 from the arrival times CIR1−12
abs of the (time) synchronized sets of 12

CIRs with optical reference transmitter-receiver distances d1−12
ref to calculate

the transmission duration CIR2−12
rel . Then, we determine the reference

FDPoAs: ToA2−12
rel = (d2−12

ref − c ·CIR
2−12
rel )/c, w.r.t. the speed of light c.
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data, also does not provide (significant) improvements on
either test dataset. Hence, the results indicate that already
a retraining of the entire network with few real LoS labels
(10,000/200 Hz=50 s) yields the best results.

VI. CONCLUSION

We propose a novel data-driven ToA estimator that extracts
optimal FDPoAs even on real-world CIRs. Our experiments
show that even simple DL architectures estimate ToAs ac-
curately and outperform the state-of-the-art. The difference
becomes significant (26% higher accuracy) in scenarios with
multipath. This even holds for SNRs<-10 dB: 17% on aver-
age. We also show that DL trained on synthetic data does not
require (but does benefit) fine-tuning to work with real data.

Future work must examine the applicability of our method
to various real-world channel configurations w.r.t. OLoS and
NLoS propagation. In any case, our DL-based approach lowers
all errors in the ToA estimation indoors and outdoors.
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