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Abstract—Ultra-wideband (UWB) systems based on Channel
State Information (CSI) estimate the position of mobile nodes
within an environment by using Channel Impulse Responses
(CIRs) of multiple stationary nodes. These contain spatial infor-
mation caused by environment interactions such as reflections
and scattering. To estimate positions from CSI of stationary
nodes, we must transmit them to a centralized node. This
introduces considerable communication overhead.

We present a large-scale study to determine whether CSI can
be compressed into a small set of underlying latent variables that
describe the most valuable information. We evaluate multiple
neural network architectures containing encoding (compressing)
and decoding (reconstructing) components and compare them
to the state-of-the-art compression techniques Discrete Cosine
Transform (DCT) and Discrete Wavelet Transform (DWT). We
show that fully connected autoencoders achieve the lowest error,
outperforming both DCT and DWT. Further experiments prove
that the reconstructed CSI can be used for positioning with only
mild performance deterioration at a compression of >97% and
even when trained on a different environment.

Index Terms—Compression, Channel Impulse Response, Chan-
nel State Information, DCT, DWT, (Variational) Autoencoder.

I. INTRODUCTION

Precise radio frequency (RF) indoor positioning systems
(IPS) are key to many location-based services such as indoor
navigation and object tracking [1]. Recently, Ultra-wideband
(UWB) gained a lot of attention as an accurate and resilient,
yet cost-efficient technology [2], [3]. While under ideal line-
of-sight (LOS) conditions UWB ranging may yield sub-
centimeter accuracy [2], non-line-of-sight (NLOS) propagation
caused by obstructions and reflections is still challenging.

Most UWB position estimators use parameters such as the
time of arrival (TOA), the time difference of arrival (TDOA),
the received signal strength (RSS), the angle of arrival (AOA),
or combinations [2]. These parameters are extracted from
the Channel State Information (CSI) obtained from the radio
signal that is sent from the transmitter to the receiver(s). Thus,
the entire received signal is reduced to a single value used in

a downstream task, e.g., to estimate the position of the trans-
mitter. This compression is, of course, accompanied by a loss
of information [4]. Yet Channel Impulse Responses (CIRs),
as a time series of correlation values between the transmitted
and received signal, describe complex signal propagation, like
reflection, absorption, scattering, and diffraction of the signal.
Fig. 1 shows one in LOS and one in NLOS conditions.

Recently, there is a lot of interest in exploiting the full po-
tential of these CIRs. This includes models of the CIR [5] and
the channel characteristics specific to an environment [6]–[8].
Other research focuses on extracting multipath components
(MPCs) [7], [9] to extract additional spatial information [10],
[11]. The same information is implicitly used for mitigating
NLOS propagation conditions [12], i.e., for CIR- or CSI-based
fingerprinting [13], [14] or LOS/NLOS classification [15].

However, as CIRs contain detailed correlation information,
using them in positioning-related tasks not only requires high
computational resources, but also centralized processing of all
CIRs observed within a network. This introduces a significant
communication load. Hence, it is desirable to compress CIRs
at the receiving units into a set of informative features that
still keep the required spatial information. While well-known
general-purpose signal compression methods such as the dis-
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Fig. 1. Two samples of channel impulse responses (CIRs): line-of-sight propa-
gation (top) and multipath propagation with prominent multipath components,
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crete cosine transform (DCT) [16] or the discrete wavelet
transform (DWT) [17] can also be applied, their compression
performance is limited, as they do not include information
on the variety of position-related information that is contained
sparsely within the CSI [18]. To address these problems, recent
work has highlighted the usefulness of autoencoder-based
compression [19], [20]. Although these are often optimal,
there is little research specifically targeting CIRs [21]. Many
crucial aspects, such as the choice of autoencoder type and
architecture and its applicability to real-world IPS tasks, are
thus still unexplored.

To close this gap of previous work [19], [21], we propose a
full autoencoder study for CIRs and a real-world evaluation.
Our three main contributions are thus the following:

• We present a study of CIR compression using autoen-
coder types with fully connected and convolutional layers,
both in their vanilla and variational forms. In addition, we
benchmark against state-of-the-art DCT and DWT.

• We present an initial study on generalization characteris-
tics across different environments. We show that our com-
pression model generalizes well to previously unknown
environments and still provides significant compression.

• We evaluate the performance of fingerprinting methods
using both compressed representations and reconstructed
signals, obtaining a positioning error of 0.59 m using the
reconstructed signals (compared to 0.42 m for the original
signals), even when generalizing across environments.

The remainder of this paper is structured as follows. Sec. II
discusses related work. Sec. III introduces our localization sys-
tem and the collected dataset. The architectures for compres-
sion and fingerprinting are described in Sec. IV. Finally, Sec. V
discusses experimental results before Sec. VI concludes.

II. RELATED WORK

Compression is a broad field that is primarily driven by the
need to reduce both memory and bandwidth, and the require-
ments and methods are highly application specific [22]. For
tasks where slightly deviating reconstructions are acceptable,
lossy techniques achieve the highest compression rates [22].
Since radio-based localization yields exact positions on a
relatively small parameter set such as TOA, it is sufficient
to find lossy compression methods that preserve the essential
features. That is why we only discuss such methods.

The DCT interprets signals as the sum of cosine functions of
varying frequencies. DCT is well known from its applications
on images [23], videos [24], and audio [25] and biomedical
signals [20], [26]. However, in the domain of radio signals
DCT shows poor performance [16], [19] (see also our experi-
mental results in Sec. V). The DWT is similar to DCT but de-
composes the signals into a set of wavelet functions. DWT has
been applied to images [27] and biomedical signals [20], [28].
It has also been proposed for compression of CSI [17], which
helps for downstream tasks such as keystroke recognition [29],
[30]. However, similar to DCT, the compression performance
of DWT is limited (see Sec. V). Other approaches such as the
Karhunen-Loeve transform (KLT) [19], Principal Component

Analysis (PCA) [19], [20], Lightweight Temporal Compres-
sion (LTC) [20], [26] and Symbolic Aggregate Approximation
(SAX) [26] are also popular compression methods. However,
these are either computationally intensive or outperformed by
deep learning [19] and autoencoders [20].

Recently, deep learning approaches have gained wide-spread
attention for compression tasks. For instance, autoencoders
achieve improvements in areas dominated by traditional com-
pression algorithms, such as images [31] and videos [32]. Both
vanilla autoencoders [33] and β-variational autoencoders [34]
have also shown favorable results for compression and feature
extraction in biomedical signals. It has also gathered signifi-
cant attention in the field of CSI compression to reduce over-
head. Approaches include fully connected autoencoders [35],
[36], encoding and decoding convolutional neural networks
(CNNs) [37], [38], an encoding CNN coupled with a decoding
recurrent neural network (RNN) [19] and variational autoen-
coders [39], [40]. A study of three convolutional autoencoders
on UWB CIR denoising suggests large kernels and shallow
networks are preferred [41]. In terms of comparative studies,
Del Testa et al. [20] compared autoencoder compression to
DCT, DWT, PCA, and LTC and found these to outperform the
classical methods on biomedical signals. Similar results were
obtained by Liao et al. [19], with encoder-decoder schemes
outperforming DCT, KLT, and PCA. Among the traditional
methods, DCT performs worse than DWT [20], while PCA or
KLT generally give the best results [19], [20].

To the best of our knowledge, there are only a few data-
driven compression methods for channel impulse responses for
the specific task of localization or fingerprinting. Nerguizian
et al. [42] used a DWT for fingerprinting with 13% loss
in positioning accuracy. Tsai et al. [36] show that autoen-
coders have negligible effects on fingerprinting using location
databases. Fontaine et al. [21] show a 29% higher accuracy
after correcting for multipath effects using compressed CIR
features derived from autoencoders. However, there is no
preliminary work that reports the impact of the proposed
architecture on the compromise between compression and
reconstruction accuracy, and they all leave unclear how well
their methods generalize to unknown environments.

In conclusion, although both DCT and DWT are still used
successfully in multimedia applications, related work suggests
that autoencoders offer the best combination of compression
ratio and reconstruction error when a sufficiently large training
dataset is available. The few previous works on CIR compres-
sion show similar findings [19], [20]. Our approach builds
on the existing knowledge. In contrast, we concentrate on
deriving an optimal architecture that offers high compression
rates and low reconstruction errors and can thereby generalize
between trained and unknown propagation environments. As
a result, our overall compression pipeline requires little to no
fine-tuning for final deployment in different environments.

III. BACKGROUND AND DATASETS

Multipath propagation occurring in indoor environments can
significantly decrease the quality of IPS. Fig. 1 exemplifies
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Fig. 2. Visualization of signal collection paths in dense multipath envi-
ronments: Receivers and objects in (a) Corridor scenario and (b) Industrial
scenario. Object locations are approximate and for illustrative purposes only.
Orange anchors are used for training, green anchors are used for validation.

the magnitude of two sample CIRs. The top row shows a
communication link with a clear LOS component (the peak is
marked). The bottom row shows a link with significant multi-
path effects and without distinguishable LOS path (we marked
the multiple distinct peaks produced by specular reflection). In
real-world environments, such as industrial, indoor or urban
scenarios, highly complex propagation conditions lead to such
heavy multipath propagation. Thus, the resulting CIRs contain
spatial information that is difficult to model explicitly.

To learn a model that can compress and reconstruct the
multitude of possible signals, it is important to collect a diverse
and representative database of CIRs. Towards this end we
use the dataset published in [8]. We employ the Decawave
DW1000 platform and use a total of six anchors configured
as receivers at known and fixed positions along with one
moving transmitter that periodically sends signal bursts that are
received by the anchors. Each of the recorded CIRs contains a
total of nc = 366 samples. Reference positions are determined
using a Nikon iGPS optical reference system with accuracy
specified in the millimeter range.

The dataset consists of three different scenarios collected in
a 30m × 40m area. The Clean Scenario contains no obstacles
and thus is mostly free of significant reflections. Nevertheless,
any suitable system must also cope with this baseline. The
Corridor Scenario contains two reflective and absorptive walls
that introduce multipath propagation. The location of the walls
relative to the anchors and transmitter positions is illustrated
in Fig. 2. The reflective sides of these walls point inwards. The
last scenario, referred to as the Industrial Scenario, contains
more diverse objects such as shelves, boxes, and a forklift.
It is the most complex and most representative scenario. The
dataset holds a total of 819, 234 CIRs, with 198, 460 CIRs for
the Clean Scenario, 318, 827 CIRs for the Corridor Scenario,
and 301, 947 CIRs for the Industrial Scenario.

Our main study uses all scenarios, with orange anchors
for training and green for early stopping and model selection
(Fig. 2). We retrain on the Industrial Scenario with a random
training and validation split, then evaluate generalization on
the Corridor Scenario. Finally, the fingerprinting application
study is performed only on the Corridor Scenario.
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Fig. 3. Structure of autoencoder networks. The input x is first compressed
to latent variables z and then reconstructed as output y. For the variational
type the latent space are normal distributions with mean µ and variance σ2

from which the subsequent decoder samples.

IV. METHOD

We train autoencoders to efficiently compress the CIR
signals while still retaining the spatial information embedded
in them (i.e., LOS peaks and MPCs). A compression directly
at the receiving nodes reduces data transmission between the
nodes and a centralized position server. This is essential for
high-frequency real-time positioning. Having a smaller set of
informative and semantic features should also help to reduce
the amount of required training data for downstream tasks
such as fingerprinting. This section describes four (prominent)
autoencoder types that form the basis of our comprehensive
study along with their hyperparameters.

Autoencoders use the two components as illustrated in
Fig. 3: an encoder f(x) maps the input signal into a latent
representation z while a decoder g(z) uses z to reconstruct the
input into y. The information loss of the composite g(f(x)) is
minimized. Variational autoencoders (Fig. 3, right) represent
the latent space using normal distributions and learn a set of
means µ and variances σ2 to encourage a more semantic and
disentangled representation in the compressed latent space.
Each input zi for the subsequent layer is then randomly sam-
pled from the respective normal distribution N (µi, σ

2
i ) [43]. It

thus formulates the decoder as a generative stochastic process
that yields signals reflecting the true posterior distribution.

There are two main layer types of interest: the fully con-
nected (FCN) layer and the convolutional (CNN) layer. The
FCN layer applies linear transformations to the input, which
does not scale well with input size in terms of computations.
The CNN-layer reduces this complexity by computing a cross-
correlation on each small neighborhood separately, albeit with
shared weights. This is suitable for the given data, as time
series inherently exhibit temporal dependencies.

Taking into account the types of autoencoders and layers,
we group our models into four different categories: FCN-
AE (vanilla autoencoder with FCN layers), CNN-AE (vanilla
autoencoder with CNN layers), FCN-VAE (variational autoen-
coder with FCN layers), and CNN-VAE (variational autoen-
coder with CNN layers). The investigated network structures
are shown in Fig. 4. We optimized the hyperparameters
through an extensive randomized search, see Table I.1

1A random search performs as well as grid search in many scenarios [44],
and was chosen for practicality due to the large number of hyperparameters.
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(366)
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Fig. 4. Illustration of neural network types used throughout our study. For a detailed description of the models and hyperparameters, please refer to the text.
Dense refers to a fully connected layer, Conv1D to a convolutional layer and Conv1DT to a transposed convolutional layer. Flatten and Reshape are used to
modify the array shapes, which are denoted by the numbers in parentheses throughout the network. Sampling is a special layer used only for VAE models
that randomly samples from the latent distribution. Some layers are repeated nl times, in which case each has its own parameters taken from a list of nl

values. For the decoder, the order of the layers is reversed compared to the encoder, which is denoted by the −1 superscript.

TABLE I
HYPERPARAMETER SEARCH SPACE.

Parameter Distribution Values

nl uniform 0, . . . , 4
nv uniform 1, . . . , 8
nn uniform 1, . . . , 366
nf uniform 1, . . . , 64
k uniform 1, . . . , 17
act uniform relu, elu, sigmoid, hard_sigmoid
nb uniform 1, . . . , 512
opt uniform sgd, rmsprop, adadelta, adam, nadam
lr log. uniform 10−5, . . . , 10−1

β log. uniform 10−7, . . . , 101

nl: # FCN/CNN layers between input and latent space, and latent space
and output; nv : # latent variables (for AE: # neurons in latent layer; for
VAE: # means and variances); nn: # hidden units per layer (only FCN);
nf : # convolutional kernels per layer (only CNN). k: filter size of kernel
per layer (only CNN); act: activation following each layer; nb: batch
size used for training. opt: optimizer used for training; lr: learning rate
of optimizer; β: β-factor for KL divergence of loss term (only VAE)

Let us now explain how we approach the optimization
criteria to train the various autoencoders. To ease the sub-
sequent mathematical formulations, we now define a CIR c as
a sequence of values ci, where i is a time-based index and nc
is the number of correlation values, such that the entire signal
c = (c1, c2, . . . , cnc−1, cnc

).
During loss calculations, we require a measure comparing

the original CIR c(1) with the reconstructed CIR c(2). For our
case, we chose the well-established mean squared error (MSE)
for the loss, the computation of which is formalized as:

LAE(c
(1), c(2)) =

1

nc
·

nc∑
i=1

(c
(1)
i − c

(2)
i )2. (1)

In the case of a variational autoencoder the Kullback-Leibler
(KL) divergence between the individual latent distributions
N (µi, σ

2
i ) and the standard normal distribution N (0, 1) is

added. This loss term can be formalized as:

KL(µ, σ) =
1

2

nv∑
i=1

(µ2
i + σ2

i − logµ2
i − 1). (2)

Subsequent layers of the network can suitably transform the
distribution N (0, 1), which makes it the default choice for
variational autoencoders even though others are possible [43].

The complete loss for a variational autoencoder is then com-
puted by adding this term to the loss for vanilla autoencoders
defined in Eqn. 1, with β acting as an additional parameter
for balancing the two different losses [45]:

LVAE(c
(1), c(2), µ, σ) = LAE(c

(1), c(2)) + β ·KL(µ, σ). (3)

Model training involves the optimization of these losses.
One standard technique is mini-batch stochastic gradient de-
scent (SGD) [46]. More advanced techniques such as RM-
SProp, AdaDelta, Adam and Nadam have also been pro-
posed [47]. As none of these have been shown to be generally
superior, they form a part of our study.

We split our data into training and validation sets along
anchors. All three scenarios (Clean, Corridor, and Industrial)
are included in the data. For training, we use the orange
anchors shown in Fig. 2 and for validation we use the
remaining two green anchors. This ensures that our validation
data is different w.r.t. effects such as multipath propagation.
The validation loss is computed after each epoch of training.

We train a total of 9,142 configurations based on the param-
eters from Table I. A full grid search is infeasible considering
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TABLE II
HYPERPARAMETER STUDY RESULTS

Model Lat. Layers1 Batch Optimizer2 Beta Score #Params

FCN-AE 8 343 – relu – 110 – sigm. – 290 – relu 127 Nadam(1.06 · 10−3) — 2.54 · 10−4 396,836
CNN-AE 7 27×17 – elu – 27×13 – relu – 16×5 – elu 486 Adam(1.99 · 10−3) — 2.82 · 10−4 119,400
CNN-VAE 8 54×12 – relu – 36×13 – elu 226 Adam(3.56 · 10−4) 4.95 · 10−7 2.83 · 10−4 320,507
FCN-VAE 8 97 – sigm. – 308 – hard sigm. – 174 – elu 98 Nadam(2.04 · 10−3) 7.07 · 10−6 3.22 · 10−4 243,656
1 Describes # hidden units (for FCN) or # convolutional kernels × filter size (for CNN), plus the activation. Decoder layers mirror the encoder layers.
2 Number in parentheses is learning rate.

the number of parameters involved. We stop training when
the validation loss does not improve for five epochs, for a
maximum of 100 epochs.

One of the primary challenges of IPS are the complex
propagation conditions in obstructed environments. One way
to deal with this is fingerprinting. This environment-specific
method works by compiling a database of known signals at
known locations that can be queried to estimate the current
position, e.g., using deep learning [14], [48]. This state-of-
the-art mitigation method is further evaluated to estimate the
impact of compression.

V. RESULTS

First, we discuss our hyperparameter study (Sec. V-A).
Next, we comparatively evaluate the compression (Sec. V-B)
and analyze the impact on fingerprinting (Sec. V-C).

A. Hyperparameter Study

Out of the total 9,142 trained configurations we discard
6,084 models as they did not achieve reasonable reconstruction
results on the validation data and such are unsuitable in
practice.2 The results indicate that the more important design
considerations is the network type. Towards this end, Fig. 5
shows a kernel density plot for the MSE scores on the
validation data, split by network type. In addition, Table II
lists the best model within each group of network types.
Subsequently, we discuss some of our key findings.

Dense models are better, but less consistent than convolu-
tional models. This suggests that convolutional models are the
more natural fit for the time-correlated CIR data. Still, among

2A model is considered reasonable if its error is lower than 2.37 · 10−3,
obtained when predicting the average CIR of the data.
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Fig. 5. Kernel density plot of MSE scores on validation data, split by neural
network type. Models with scores lower than 2.37 · 10−3 were discarded.

the top ten models, eight are of the FCN-AE type, indicating
that properly configured variants of dense models outperform
other types. As dense networks connect to all input nodes
(unlike convolutional networks) they are capable of capturing
more complex correlations within the CIR signal. However,
CNN models seem to be less sensitive to hyperparameters,
which makes them easier to be tuned in practice.

Vanilla models outperform variational models. Only a
single variational model, CNN-VAE, is among the top 100
models, suggesting that these are only partially applicable to
the given domain. One possible explanation is the conflicting
goal of the variational autoencoder, which encourages standard
normal distributions in the latent space, thus trading some
of the compression effectiveness. While we assumed that
modelling of the input distribution could lead to a better gen-
eralization, we could not see this in our evaluation. Therefore
we do not consider VAEs in our further discussion.

RMSProp, Adam, and Nadam optimizer equally yield
best performances. SGD and Adadelta, on the other hand,
perform significantly worse as they are more sensitive to the
selected learning rate [49]. This is in line with other published
research [50]. Learning rates between 10−4 and 10−3 produce
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Fig. 6. MSE scores by number of latent variables nv (bottom axis) and
compression ratio (top axis). (a) Box plots of FCN-AE and CNN-AE study
models, where black lines visualize medians, colored bodies quartiles and
colored whiskers non-outlier extrema. (b) Best FCN-AE and CNN-AE models
along with DCT and DWT for reference. Best viewed in color.
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Fig. 7. Distribution of MSE scores for FCN-AE, DCT and DWT on testing
data of Corridor Scenario. All three use nv = 8 latent variables.

the best overall scores. We find that the batch size has
no measurable impact on the overall results, suggesting the
problem is simple enough that a few samples per batch suffice
to guarantee convergence.

FCN-AE should use at least nl=2 layers and performs
best with certain activations. Early layers should use either
ReLU or ELU, while later layers should use either sigmoid or
hard sigmoid. One possible explanation is that the decoder
benefits from the additional regularization caused by the
limitation to the activation range [0, 1]. The individual number
of neurons nn per layer did not influence results much overall
as long as a certain overall number of parameters was used.

CNN-AE should contain at least nl=1 layer and again
performs best with specific activations. The first layer should
use either ReLU or hard sigmoid while all other layers should
use the sigmoid activation. The layer count nl is largely
irrelevant besides the bare minimum of one layer. This is also
in line with previous results [41]. Both filter count nf and
kernel size k do not show a significant impact on performance.

Roughly 10,000 parameters are needed to achieve rea-
sonable results for both FCN-AE and CNN-AE. This makes it
easy to deploy it on computationally restricted devices often
encountered in IPS. Parameter counts in excess of around
50,000 do not significantly improve performance anymore.

The compression requires a trade-off between ratio and
error. The achieved compression ratio is inversely related to
the number of latent variables nv . To be usable in practice,
the compression needs to maintain suitably low reconstruction
errors. Thus, Fig. 6 (top) shows the distribution of MSE scores
for different nv . As expected, the score follows an approxi-
mately exponential decay with respect to nv . After nv = 4, the
relative improvements of each additional latent variable drop
below 10% and might not be needed. Thus, nv = 4 could be
sufficient depending on the targeted application.

Summary: We recommend the usage of the FCN-AE type,
with nl ≥ 2 layers and ReLU or ELU for the first layer and
sigmoid or hard sigmoid for the later layers. For computing-
constrained environments the parameters can be lowered to
a few 10,000s by appropriately tuning the number of layers
nl and neurons per layer nn. For bandwidth-constrained envi-
ronments the number of variables can be reduced to nv = 4,
at the cost of additional reconstruction errors. While CNN-AE
are less sensitive to hyperparameters, they lag behind FCN-AE
when both are optimally configured.
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Fig. 8. Comparison of original with FCN-AE, DCT, and DWT reconstruction
on three sample CIRs, cropped to i ∈ [80, 179]. Peak is well reconstructed
for both FCN-AE and DWT, but missing for DCT. MSE scores for FCN-AE
are (a) 0.81·10−4, (b) 2.62·10−4 and (c) 8.40·10−4. FCN-AE uses nl = 3
layers and nv = 8 latent variables. First layer has nn = 343 neurons with
ReLU activation, second 110 with sigmoid and third 290 with ReLU.

B. Baseline Comparison

We also benchmark our autoencoders against two state-of-
the-art compression methods, i.e., DCT (that keeps the nv first
components as features) and DWT (that keeps the nv highest
coefficients). Note that for DWT, an additional overhead is
incurred as we need to store the index of the coefficient.
Fig. 6 (bottom) shows the results of the best autoencoder
models along with the baseline methods on the same validation
data that we used for the hyperparameter study. While DWT
outperforms DCT considerably, both cannot reach the level
of compression performance that our best autoencoders yield.
This is because both DCT and DWT are general-purpose
algorithms that incorporate no domain knowledge, while the
autoencoders implicitly learn and use the inherent characteris-
tics of the data to achieve more efficient compression. he score
distributions shown in Fig. 7 further highlights the superiority
of our best FCN-AE model over DCT and DWT.

To enable both a better interpretation of the error values and
a qualitative comparison of the methods, Fig. 8 shows three
examples with reconstructions of FCN-AE, DCT, and DWT.
The DCT does not capture the complexity of the signal, as
it cannot describe the CIR structure with only a few cosine
functions. The DWT reconstructs the signal more accurately,
especially in the area of the peak, but still only provides a
rough approximation of the position and shape of the peak.
Our FCN-AE retains the exact shape of the important peak,
while discarding the non-relevant noise later within the signal.
This further highlights the capability of the autoencoder to
select features by importance, as the peak is essential for TOA
estimation and thus positioning.

C. Real-World Applicability

To assess the effects of compression in real-world applica-
tions, we evaluate a fingerprinting approach with deep learning
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TABLE III
GENERALIZATION STUDY RESULTS

Model Validation MSE Testing MSE
(Industrial Scenario) (Corridor Scenario)

FCN-AE 1.95 · 10−4 4.12 · 10−4 ×2.11
CNN-AE 2.32 · 10−4 4.90 · 10−4 ×2.11
FCN-VAE 2.62 · 10−4 5.33 · 10−4 ×2.03
CNN-VAE 2.38 · 10−4 4.79 · 10−4 ×2.01

on raw CIRs [14], [48]. Our proposed pipeline compresses the
CIR at each receiver and then sends it to a local server for
positioning. The central positioning neural network requires
good reconstructions, since it makes use of important spatial
information (e.g. reflections, diffraction and absorption).

We previously trained on all scenarios, which is not rep-
resentative of a typical use case, where a trained model is
deployed in a different environment. To simulate our outlined
pipeline, we first retrain the best model of each category on the
Industrial Scenario with a 80%/20% training and validation
split and then evaluate on the Corridor Scenario.

Table III lists the resulting validation and testing scores.
The FCN-AE model continues to perform best, while the
FCN-VAE model performs worst. For all models, the errors
are around twice as high in the testing scenario compared
to the validation scenario. We subsequently select the FCN-
AE compression model for further analysis. We then choose
FCNs to estimate the location based on the six CIRs from each
anchor. We evaluate three different scenarios, which train and
test with the original CIRs, the reconstructed CIRs and the
compressed features, respectively. The CIR-based networks
(FCN-FP-1) compute two values representing the x- and y-
coordinates based on the 6×366 CIR values. In a preliminary
study, we found that the following parameters yield optimal
results. The network contains three FCN layers using 800,
300, and 50 neurons, each followed by a ReLU activation. The
feature-based network (FCN-FP-2) computes the coordinates
using the 6× 8 latent variables. This network uses three FCN
layers with 30, 20, and 10 neurons, each followed by ReLU.

Training of the fingerprinting networks is done on the
Corridor Scenario. The individual sets of six CIRs are sorted
by timestamp, ensuring that the splits contain slightly different
data within the same general area. We use 60% at the start for
training purposes, with the next 20% kept for validation and
the final 20% for testing. The evaluation criterion is the mean
Euclidean distance between the predicted points on the testing
data and the ground truth points obtained with a Nikon iGPS
optical reference system at millimeter-level accuracy.

Table IV shows the resulting mean positioning error. Be-
tween the original and reconstructed CIRs, the error of the
reconstructed signals is 39% higher than the error of the
original signals. When using the compressed features, the
positioning error more than doubles to 0.97 m. While this
difference in performance indicates that the decoder is learning
spatially significant information, it is impossible to fully verify
this due to the different architectures of the fingerprinting
networks. This aspect needs further investigation.

TABLE IV
FINGERPRINTING RESULTS

Model Trained/Tested With Error

FCN-FP-1 Original CIR 0.42 m
FCN-FP-1 Reconstructed CIR 0.59 m
FCN-FP-2 Compressed Features 0.97 m

Since the compression model was trained on a different
environment, a slight performance decrease is to be expected.
The scenarios are significantly different in their composition
and propagation conditions. Combined with the compression
rate of 98% this indicates that the fingerprinting approach
still provides a robust localization performance. The most
important spatial information of the CIR is thus still available
in the compressed features. This is a promising initial outcome,
as it shows that the compression model works even when
switching environments and without any further fine-tuning.

VI. CONCLUSION

This paper presents and evaluates an approach to compress
CIRs with optimized autoencoders. Our large-scale study of
possible architectures shows that our fully connected vanilla
autoencoders (FCN-AE) outperforms other data-driven vari-
ants and the state-of-the-art methods DCT and DWT. Our
results serve as a guide for robust and generalizing com-
pression of radio signals. Specifically for FCN-AE we show
that two layers are sufficient, with ReLU or ELU activations
at the beginning and (hard) sigmoid activations at the end.
Compression remains a tradeoff between ratio and error, but
a reduction to four components is feasible.

We also provide results for data-driven fingerprinting with a
39% increase in position error paired with a 98% decrease in
data transmission. Our results show that a compressed version
of the CSI is sufficient to achieve reasonable localization per-
formance when compared to the raw CSI although application-
dependent. Future work must determine the role of the decoder
model and the full benefits when jointly training autoencoders
with task-driven models [21].
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