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Figure 1: Users wear HMDs and use a sensor-augmented hand-held tool. They follow the task-by-task guidance to complete
manufacturing processes. We continuously monitor the process, detect and classify actions, and extract quality metrics via ML.

ABSTRACT

The ongoing automation of modern production processes requires
novel human-computer interaction concepts that support employees
in dealing with the unstoppable increase in time pressure, cognitive
load, and the required fine-grained and process-specific knowledge.
Augmented Reality (AR) systems support employees by guiding and
teaching work processes. Such systems still lack a precise process
quality analysis (monitoring), which is, however, crucial to close
gaps in the quality assurance of industrial processes.

We combine inertial sensors, mounted on work tools, with AR
headsets to enrich modern assistance systems with a sense of process
quality. For this purpose, we develop a Machine Learning (ML)
classifier that predicts quality metrics from a 9-degrees of freedom
inertial measurement unit, while we simultaneously guide and track
the work processes with a HoloLens AR system. In our user study,
6 test subjects perform typical assembly tasks with our system. We
evaluate the tracking accuracy of the system based on a precise
optical reference system and evaluate the classification of each work
step quality based on the collected ground truth data. Our evaluation
shows a tracking accuracy of fast dynamic movements of 4.92 mm
and our classifier predicts the actions carried out with mean F1 value
of 93.8% on average.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Mixed / augmented rea-
lity;

1 INTRODUCTION

In recent years we saw a shift towards automation of modern pro-
duction towards Industry 4.0. While automation dominates many
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processes, still, manual labor remains important due to its flexibility
and ease of deployment [6]. In this context, Augmented Reality
(AR) assistance already adds many benefits for workers, such as
better worker training and guidance [19, 20], monitoring [9, 16, 17],
or process optimization [13]. However, these widespread AR ap-
proaches are unable to accurately measure the quality of the tasks
performed and, unlike automated processes, lead to gaps in the qual-
ity assurance process. However, to identify malfunctions and defects
in the products, they must be checked by a final inspection or a
camera system upon their completion. There are some intelligent
tools with built-in control units, but they are expensive and limited
in their variety, e.g., [1] [2].

Besides these common usages, AR headsets have previously been
deployed to monitor the environment for other means than visualiza-
tions. On one hand, the built-in cameras were used to automatically
track and label real-world objects [5, 18], and depth sensors were
used to compare the current work progress with a target/final 3D
model [17]. These methods were also used to capture work pro-
cesses, such as detecting the current stage in an assembly process.
However, they are as limited as other optical quality assurance sys-
tems as they cannot extract important details of a work process, e.g.,
a screw’s torque, from images. On the other hand, the positional
tracking of AR systems is limited [7, 10] and impedes reliable track-
ing of ego-motion and arbitrary objects. While both external [15,21]
and internal systems such as simultaneous localization and mapping
(SLAM) can assist and enhance the positioning performance [11],
they have a high cost associated with them, reduce mobility and
versatility, and suffer from computational complexity.

In contrast, sensor modules that function as add-ons for conven-
tional work tools capture sensor characteristics automatically [14].
Such low-cost modules can be adapted to a large variety of tool types
and seem to be natural partners for AR-assistance systems. In this
paper we propose to co-opt existing AR-assisted processes and add
quality predictions, that are orthogonal to what optical sensors can
provide. To add this sense of quality we attach sensor modules to
conventional work tools, and use a Machine Learning (ML) classifier
to predict quality metrics for each work step of a process.

We use a modern AR head-mounted display (HMD) and a sensor
module (for details see [14]), to simultaneously guide workers and
to provide them with immediate feedback on the quality of their
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work. An overview of the components and pipeline is depicted in
Fig. 1. First, we develop an exemplary but modular and expandable
guidance in AR, rendered as 3D overlays to workpieces. Next, we
extend the 3D tracking capabilities of the HoloLens to track the posi-
tion and orientation of the HMD, tool, and workpiece with encoded
markers via the Vuforia [12] SDK. Using this tracking, we monitor
the work process in a finite state machine. Finally, we attach a sen-
sor module to conventional tools, such as the electric screwdriver
from Fig. 2 (left), to capture details of the work process. The key
algorithm then uses ML to process the sensor data directly when
the actions are executed. Our Decision Tree classifier (DTC) uses
a single inertial measurement unit (IMU) (with an accelerometer, a
gyroscope, and a magnetometer). We predict quality metrics on the
broader process-level using the HMD tracking, e.g., to detect the
correct order of tasks, and the deeper task-level using ML, e.g., by
detecting actions and their duration, from that we can infer whether
a predetermined torque was reached. The system detects errors
early, and provides direct feedback to workers. Our add-on approach
learns on the job, and aims at being as flexible and adaptive as the
workers themselves.

Our approach compensates the optical tracking limitations of
modern AR systems as it exploits external sensor information and
ML to enhance AR-assisted worker guidance systems, that we vali-
date in a case-study for a typical assembly process. We monitor the
progress and predict quality metrics. The evaluation of the HMD’s
tracking accuracy and the sensor module’s classification accuracy in
a prototypical environment shows the system’s performance.

The remainder of this paper is structured as follows. We discuss
related work in Sec. 2. Next, we introduce our system architec-
ture and introduce algorithms in Sec. 3. We show results from a
study with several test subjects for tracking accuracy and the ML
classifier’s quality prediction in Sec. 4. Sec. 5 concludes the paper.

2 RELATED WORK

We discuss related work that uses augmented reality for worker
guidance, process monitoring, and tracking (quality assurance).

Guidance. The research field on using AR to train and guide
workers is well represented by the meta-study by Werrlich et al. [20].
The authors present 17 different studies on this topic and evaluate
their results. Most of them conclude that training with AR systems
improves the quality (error susceptibility), the short- and long-term
memory, skill-transfer, and user satisfaction, but the training can also
take longer to complete. The structure of the application is important,
e.g., step-by-step solutions seem to be less suitable for training, as
they may make the trainees dependent on the instructions instead
of learning the skill. To improve the understanding of how AR
improves training efficiency and quality over paper-based training,
Werrlich et al. [19] compare paper-based with a HMD-based training
for manual assembly tasks, and come to the result that participants
perform significantly faster but also significantly worse using paper-
based instructions. Furthermore, all trainees preferred HMD-based
learning for future assembly trainings. These encouraging findings
show the clear benefits of AR for training and guidance, and we
incorporate them into the design of our own guidance system, that
additionally monitors the quality of work to provide feedback.

Evans et al. [8] also evaluate AR for assembly and present de-
sign guidelines. Their results confirm that it is possible to guide
specifically assembly processes via AR, but show that tracking ca-
pabilities of HMD’s are limiting this use-case. We also incorporate
their design guidelines, confirm the HMD’s limitations experimen-
tally, and propose an improved tracking approach, that together with
additional sensing capabilities enable AR for assembly monitoring.

Monitoring. Various methods for progress monitoring of man-
ufacturing processes and objects were recently investigated. Omar
et al. [16] found that progress monitoring, e.g., in construction pro-
cesses, to detect malfunctions, defects, and errors as early as possible,

reduces expensive rework. They also discuss AR-based sensing and
visualization approaches that build on external RGB camera sensors
that capture additional information about work processes and render
feedback to the AR. However, since they use camera-based sen-
sors, the authors also show several limitations such as accurate and
reliable image registration and interference, that complicate the visu-
alization, especially in outdoor construction places. Bekel et al. [5]
and Shreve et al. [18] use AR HMDs to acquire ground truth image
data and the labels of real-world objects. They either label image
patches that are collected while free-roaming using self-organizing
maps [5], or sample images from labelled 3D reconstructions of
objects [18] that the AR HMD captured. Both works aim to collect
visual data about objects, that then allow down-stream training of
classification algorithms. These works are tangential to RGB-based
process monitoring and introduce novel perception methods, how-
ever, they again only collect data on visual properties, and do not
extend to dynamically changing objects, e.g., in assembly, easily. To
cope with typical RGB limitations, Sawaga et al. [17] use an external
depth sensor (RGBD), attached to an AR HMD, to track the hands
of a worker and to compare a 3D reconstruction of the environment
to a corresponding ground truth one in a timely, immediate man-
ner. They show that their RGBD-based approach can monitor the
progress of a manual labor task, based on the reconstruction error,
more reliably than with a RGB sensor. While this approach is able
to detect coarse changes of the processed objects, it is limited to
visual properties. Hence, they cannot include non-visual cues about
work processes or objects, e.g., the torque of a screwdriver, that are
important for many assembly tasks. In contrast, our system provides
this additional insight for every task of the process, and also gives
accurate and reliable feedback to workers.

While our approach builds upon previous findings (as we exploit
AR to render a guidance story that we can adapt to any work process),
we think that for process monitoring and quality assurance the prior
limitations of optical sensors require a solution with orthogonal
sensor views. Hence, our framework (1) uses optical sensors (built-
in HoloLens sensors) to sense coarse-grained location information
of a worker, a work tool, and a workpiece along the whole work
process, (2) senses additional fine-grained monitoring information
about a task with an IMU (mounted at a work tool), (3) exploits ML
to predict quality measures of a fine-grained action from these raw
sensor data, e.g., to approximate non-visible properties like screw
torque in an assembly application, and (4) renders enriched guidance
feedback that we derive from these quality measures to AR to guide
the worker and optimize the work process.

3 METHOD

Fig. 1 shows our processing pipeline. We use a commercial AR
HMD system for worker guidance (see Sec. 3.2) to both visualize
and instruct work process tasks and use its positional tracking (see
Sec. 3.1) of the worker, a work tool, and a workpiece to derive
process information to monitor it, and to predict its quality. We
define specific quality metrics for assembly tasks (see Sec. 3.3) and
train a Decision Tree classifier that allows to monitor the quality of
work (see Sec. 3.4) for immediate feedback that feeds back into the
worker guidance, e.g., alerts the users to mistakes. To evaluate our
method, we perform a case study: we equip hand-held work tools
with sensor modules [14] that classify sensor values, see Fig. 2 (left)
and perform an exemplary manufacturing process with an engine
block, see Fig. 2 (right).

3.1 Tracking
Our positional tracking approach registers and stabilizes the Mi-
crosoft HoloLens tracking system. Thus, we use Vuforia [12] and
encoded optical markers (targets) to reliably identify the current
work process and accurately re/calibrate our system. We attach en-
coded markers to both the hand-held tool and the workpiece, see
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Figure 2: Electric screwdriver with attached sensor module (red
circle) and motor-block with four screws (red circle) and encoded
marker (red rectangle).

Fig. 2, and use HoloLens’ built-in simultaneous localization and
mapping (SLAM) to provide a precise mapping of the virtual in-
structions to the corresponding environment whenever the targets
leave the field of view, by registering each target’s position within
the environment map.

We use Vuforia’s proprietary tracker, that detects the encoded
marker on the RGB camera image, and calculates its position and
rotation. It then automatically transforms these properties into the
HoloLens’ internal spatial mapping coordinate space. The regis-
tration in the environment is then ensured by HoloLens, where its
integrated SLAM tracks the environment via RGB-D sensors [10].
When a target re-appears after occlusion or loss of tracking, the
system detects and registers the target, eliminating holographic drift
of the point of interest that occurred in the meantime.

We use QR-codes of as encoded markers to easily and reliably
identify the tool, the workpiece and its associated points of interest,
i.e., the process with its tasks. The detection of markers is crucial
for correctly visualizing the AR guidance. Hence, to ensure reliable
detection, we use a 14 cm large marker for the workpiece, following
Vuforia’s recommendation for an assumed 65 cm distance between
camera and object. However, for the tool we reduce this to 10 cm to
compromise between accuracy and practical usability. The positions
of points of interest, e.g., the screw threads in an assembly use-
case, are inferred relative to the coded marker on the workpiece that
encodes a position.

Thus, we continuously visualize each component’s position to
guide a worker through the steps in a process. Note that we still
visualize overlays to the current screw even if the target of the current
workpiece is no longer within the viewing port of the user.

3.2 Worker Guidance

Based on the findings of Werrlich et al. [20], we design our worker
guidance system visualizations to be simple and consistent and
enable an intuitive progression by giving users enough time to act
and react. Fig. 3 depicts an exemplary construction process in 9
tasks: (1-8) un-/tightening of screws and (9) screwing in the air
once, together with appropriate time windows for preparing actions
and performing them. According to Evans et al. [8], we avoid
distractions, as we display any visualization in a simple and readable
manner, and hence, limit the color pallet to a fixed set of colors
consistently encoding different types of tasks, e.g., only the colors
cyan, magenta, and yellow, see Fig. 5 (top). We represent the current
point of interest, e.g., a screw, by a yellow ring, and instruction
panels in magenta.

Since we formulate our processing pipeline as a finite state ma-
chine, to complete a work process, the user must finish a sequence of
tasks. Users progress through tasks sequentially either using a click
gesture or by directing their gaze at a decision panel for a certain
amount of time, see Fig. 5. Click is used for instruction panels, and
gaze is used to start actions, i.e., when the hands hold a hand-held
tool and gestures cannot be performed.

The HMD tracks the coarse-grained location of the work tool
at the workpiece to identify, guide and monitor the current process
stage. For instance, during a complete process, we use the coarsely
tracked positions, to determine each task, such as tightening
screw 1 to 8 in an assembly process, and also to synchronize the time
frames of both the HoloLens tracking system and the external IMU
data stream that we then use to control the quality of each individual
task. Hence, we use countdowns of 3s before transitioning into each
task, to give users enough time to position the tool correctly. At
the end of the countdown a GO! visualization signalizes the user
to start. Since we start recording the external IMU data stream
3 seconds before each task starts, we ensure that we capture all
data that represents the full time range of a task for more precise
ML-based analysis.

3.3 Predicting Quality Metrics

To solve the limitations of current monitoring systems reported
by [8,17], we employ an additional external IMU on a sensor module
to capture additional data on a task. We first acquire training data and
corresponding ground truth labels to train a classifier that predicts a
quality metric for each task of a work process by processing the raw
time series data in a live-phase later on. Hence, in the live phase, the
worker guidance system provides both the expected logical label,
e.g., screwing clockwise, and coarse-grained time interval for each
task. The IMU enables different quality metrics that we derive for
each work process individually.

We implement three hierarchical levels of metrics, see Fig. 4: The
first level is based on the HMD’s coarse-grained location tracking
through the complete process via the worker guidance system. Since
every task (e.g., screw 1 to 8) in a process is performed exactly once
in the state machine, its assigned location and order are determin-
istic and thus, we can use the coarse-grained location information
to identify each task. The second level employs the external IMU
for fine-grained monitoring of the execution of each task. Hence
the external sensor module is used when the HMD cannot reliably
detect the task. For instance, the HMD fails to register suitable char-
acteristics to detect a tool’s action, but the external sensor module
reliably detects them via magnetic fields or acceleration forces. The
third level monitors the quality of a task’s execution. Thus, each task
is associated with a set of constraints (i.e., quality metrics) that the
external sensor module detects, such as the duration of the action or
the tool’s angle-of-attack. In our exemplary assembly study, we use
a single quality metric that describes whether the correct torque was
reached. This is predetermined by the duration of the configured
rotation speed of the screw driver, the screw, and the screw thread at
the workpiece.

Screwing in Screwing out

screw 0

screw 1 screw 3

screw 2 screw 0

screw 1 screw 3

screw 2

positioning
10s

screwing in
5s

for each screw

positioning
10s

screwing out
5s

for each screw

screwing in the air
5s

Figure 3: Worker guidance example with sequential work steps, e.g.,
positioning a tool and executing of tasks such as tightening screws.
Screwing in the air is executed position-independent.
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Figure 4: Our quality metric detection in three stages: Process level
coarse-grained monitoring, fine-grained monitoring of the task, and
fine-grained monitoring of each action.

3.4 ML-aided Analysis
In line with previous work [14], we use the same DTC approach
together with a set of approx. 32 IMU-based features, e.g., norm of
magnetic field or maximum of acceleration given a data window, to
sufficiently and reliably detect each task in a process. By clearance,
we can even distinguish between various sub-classes of actions of
each task. However, for simplicity, in our case-study, we only train a
DTC on a small (114 seconds, 96 tool actions), separately recorded
dataset, that is publicly available1, and that was labeled using the
NOVA [4] tool, to predict the quality metrics, i.e., detection and
measuring of duration of each task. We use this DTC to process
IMU data on the external sensor module during the worker guidance.

The training is based on the AutoML pipeline presented in [14].
We use a sliding window on class-balanced data, extract and select
features, and train a DTC using cross-validation and grid-search to
optimize its hyperparameters. Given a dataset, we subdivide the
time series data into equally distributed classes of sub-windows of
0.02s length with an overlap of 50%. In a preliminary study we
found that these parameters achieve the highest accuracy over the
variable-length actions of electric screwdrivers. For each window,
we extract and select a set of features, inspired by [14]. Hence, from
the 32 unique features we select those 16 features that represent the
tasks best, using Random Forest feature importance and eliminating
features that are correlated or add no information, using the Pearson
correlation test. We use 5-fold cross-validation to train a robust
classifier given the selected features, and a grid-search to tune the
model’s hyper-parameters, i.e., number of different features and tree
depth, resulting in a DTC with 21 nodes.

4 EXPERIMENTAL EVALUATION

We first describe the experimental setup, the study design, and
present benchmarks for tracking (guidance) and monitoring.

4.1 Hardware Setup.
For our experiments, we use a Microsoft HoloLens (Unity
2017.4.30f1 with HoloToolKit 2017.4.3.0 and Vuforia 7.0.57), an
electric screwdriver (Bosch Exact ION 12-700, programmable con-
stant speed control set to 300min−1 clockwise and 736min−1

counter clockwise) and a workpiece, a large engine block, see
Fig. 2. We use the millimeter-accurate ART [3] optical ref-
erence positioning system to validate the tracking capabilities
of our system (MAE: Mean Absolute Error; SD: standard de-
viation; location: MAE=0.1 mm; min=0.001 mm; max=3.2 mm
SD=0.54 mm, orientation: MAE=0.01°; min=0.001°; max=0.2°;
SD=0.06°). ART employs 9 infra-red (IR) cameras that cover an
area of 10m×10m×3m=300m3 using reflective markers that are
attached to each of our system components.

We design the AR worker guidance system around a typical car as-
sembly process and perform the tasks tightening, untightening,
and air screwing. The HMD tracks the positions of tool and tasks
(screw thread) relative to each other, i.e., point of interest on the
workpiece, and the sensor module that we attach to the tool classifies

1https://github.com/mutschcr/tool-tracking

actions. We visualize the order of the tasks and the workpiece in
Fig. 2, and show an exemplary task in Fig. 5.

4.2 Study Design
We recruited 6 test subjects (male: 5; female: 1; average age: 24)
with varying levels of previous experience with AR or professional
powered tools (but all experienced amateurs).

We designed the study around a typical assembly process, see
Fig. 3, with three different types of repeated tasks performed on an
engine block: 4× tightening (clockwise), once screwing in the air
and 4× untightening (counter-clockwise). By having the experiment
repeated by a large set of participants that were not involved in the
system’s development and in the classifier training, we produce more
reliable estimates for the tracking, classification accuracy and the
system’s overall applicability. We used artificial room lighting. All
test subjects started under the same preconditions after a short period
of familiarization with the HMD, and the tool, and worked without
disturbance in a video-recorded laboratory setting. The average dura-
tion per experiment is approximately 469 s (min=315 s;max=572 s),
and varies due to, we believe, higher cognitive load for less experi-
enced users. From the study’s results, i.e., precise reference location
tracking and video recordings, we extract ground-truth position and
task classification data, that we use in the following evaluation to
validate our system. Note that we describe the study design for each
benchmark again individually in Sec. 4.3.

4.3 Benchmarks
We describe the results of our method along its performance in
coarse-grained guidance, i.e., its accuracy to locate each task cor-
rectly, and along its performance in the fine-grained monitoring, i.e.,
its accuracy to predict each task’s (action) quality.

4.3.1 Coarse-grained Guidance Benchmark
To assess the first-level quality metrics (i.e., progress through the
worker guidance) we have to evaluate the performance of our en-
hanced AR tracking system (fusion of HoloLens and Vuforia). Our
study design is inspired by Feigl et al. [10], who describe an elabo-
rate setup, where the HoloLens performs reliably in static scenarios
as it keeps track of problematic ego-motion and its distance to other
(tracked) objects. We record three different scenarios at 20s each
to evaluate the tracking accuracy: no device in motion, only tool in
motion, and both HMD and tool in motion.

No device in motion. We statically place the HMD at a distance
of 1 m from the workpiece. We also fix the hand-held tool in 30 cm,
60cm, and 90cm distance from the HoloLens, and report the worst-
case results at a distance of 90 cm. The root mean squared error
(RMSE) is between 0.016mm and 0.058mm and has a SD of be-
tween 0.249mm to 0.671 mm. Both the error and the SD increase
slightly with distance. The ranges of these results are overlapping
the reference system’s precision of 0.1 mm, but show the enhanced
tracking’s principle feasibility to locate coarse-grained tasks within
a process.

Tool in motion. To investigate the effects of steady motion of
the hand-held tool, we place the HoloLens as well as the tool at
the same height. The HoloLens is at a distance of 80 cm from the
workpiece, i.e., about an arm’s length away. To evaluate tracking
for simple movements we move the tool slowly and steadily from
the left to the right in 20 cm, 40 cm, and 60 cm distance from the
HMD, and additionally back to front, one time each for 20 s. The
tool motion causes a significant increase in the RMSE (average of
3.948 mm) for back to front movements, and up to 5.87 mm for the
20 cm distance. We show the measured distances over time of our
method and the reference system in Fig. 6 (top), together with the
absolute error in the lower plot. While the error remains relatively
low over the duration of the experiment, we can observe a loss of the
tracking caused by the limited field-of-view of the camera sensor,
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Figure 5: Visualization of one step from a larger process: First, the user is instructed on the next step. Then when ready, the user positions the
tool within a given time frame, and finally performs the task. We use the direction of gaze and countdowns for progressing through the process
guidance system.

Figure 6: Top: Tool moves back to front in a range of 80cm. Bottom:
Random slow movement of tool with SLAM enabled.

that is visible around 53.310 s. We think that this may be addressed
internally by detecting the loss of tracking and handling it in the
framework, or externally by asking users to keep their gaze on the
tool when that becomes necessary during guidance.

HMD and tool in motion. We record a simplified work task
that resembles a coarse-grained guidance task: The test subject
wears the HMD and handles the tool at the extended arm, while
standing frontally in a distance of 80 cm to a workpiece. We mostly
fix the translational ego motion of the HMD but allow the head to
move naturally, e.g., to follow the hand movement, and move the
tool dynamically. We evaluate the enhanced AR tracking with and
without SLAM enabled.

With an average error of 4.93 mm, the accuracy of our enhanced
tracking (with SLAM) is comparable to the previous tests with slow,
steady motion. However, the more dynamic motion and subsequently
optical artifacts registering on the RGB sensor, Vuforia locates the
coded markers falsely. We present this anomalous behavior in Fig. 6
(bottom) (between 52.115 s and 52.118 s). The error’s SD in the
best-case dynamic motion scenario is 67.37 mm. Without SLAM,
however, the performance is predictably worse. SLAM helps to
decrease the RMSE for dynamic motion from 5.397 mm to 4.93 mm
(SD from 77.03 mm to 67.37 mm).

Label Action No Action

Precision 93.7 (±1.4) 99.9 (±0.1)
Recall 95.6 (±2.4) 99.9 (±0.1)
Accuracy 99.8 (±0.1) 99.8 (±0.1)
F1 94.6 (±1.7) 99.9 (±0.1)

Table 1: Confusion matrix with average values for 6 test subjects
and actions detected by Decision Tree classifier.

Our studies show that our enhanced AR tracking system reliably
locates the tool and workpiece even with dynamic motion, with an
RMSE of 4.93 mm (SD=67.37 mm). Therefore, it provides informa-
tion that is accurate enough to identify each task of a process, but
only if each task’s proximity to its closest neighbors is further away
than one SD (e.g. 67.37 mm). The observed error is low enough to
identify a task, but it cannot detect an action, i.e., its occurrence or
start and stop time, that we need for quality metrics.

4.3.2 Fine-grained Controlling Benchmark

We use our external sensor module (with IMU) to derive a second-
and third-level quality metrics, for the fine-grained part of our moni-
toring system. For this evaluation, we first train a DTC as described
in Sec. 3.4. The classifier achieves an accuracy of 98% for action de-
tection on its separate training dataset. Note that the HMD narrows
down the sensor module’s IMU data into coarse windows, one for
each task, before ML inference takes place, and also hints logical
labels that determine task specific quality metrics (constraints). Our
classifier then predicts whether tasks occur and estimates their dura-
tion as a metric for process quality. In this evaluation, we compare
predictions with ground truth labels that we annotated using video
recordings and the NOVA [4] toolkit.

Second-level quality metric. We test the DTC’s performance
for detecting any type of task involving the tool during our assembly
study with 6 test subjects, see Sec. 4.2 for details on the study
design. The DTC predicts on short windows of 0.02 s length with
50% overlap, which adds 0.01 s uncertainty. A post-processing step
collects consecutive predictions and filters false predictions that
are shorter than 0.3 s. Table 1 lists the average values of precision,
recall, accuracy, and F1-score together with their SDs across all test
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Label tightening untightening airscrewing

Precision 91.3 (±4.0) 88.6 (±4.3) 99.3 (±0.8)
Recall 92.3 (±3.1) 94.3 (±6.7) 97.8 (±2.0)
Accuracy 99.9 (±0.0) 99.9 (±0.1) 100 (±0.1)
F1 91.6 (±1.1) 91.2 (±4.6) 98.6 (±1.0)

Table 2: Confusion matrix with averages for 6 test subjects: Each
logical action has different classification results, due to the diverse
IMU data that characterize each action. Air screwing causes near to
no distractions, whereas tool impacts on a workpiece water down
the classifiers clear decision boundary for the other classes.

subjects. The average accuracy score for detecting tasks is about
99.8%, with an F1-score of 94.6%. The lower precision means that
the classifier mixes up false positives, e.g., knocking tool against
workpiece, with real tasks to a low degree. However, most false
positives are still acceptable (as we know they are short we can
easily filter them out) and no true tasks (that are usually hundreds
of milliseconds long) were missed. In this regard, recall is slightly
higher with 95.6%, meaning that tasks do not remain undetected.

Third-level quality metrics. We further separate the tasks
into their known ground-truth action classes, i.e., tightening,
untightening and air screwing, and focus on their duration
as the core quality metric for our example application. The system
achieves a very high accuracy for all classes, see Table 2. Due to
the relatively low precision for tightening and untightening,
their duration is slightly overestimated. On the flip side, the system
generally does not underestimate action duration due to false neg-
atives, with recall values of 92.3%, 94.3% and 97.9%. To go into
further detail, the DTC performs better for air screwing because
there are no physical impacts of the tool onto the workpiece that
confuse the DTC. We conclude that we can reliably determine our
action duration-based quality metric. However, for other tool types,
e.g., pneumatic screwdrivers, that can have vastly different sensor
characteristics with a long run-down phase after completing the ac-
tion, another ML approach, e.g., with class specific training for each
action, is required, as purely detecting activity is insufficient [14].

The overall results show that the system performs well for each
of the three levels of our proposed quality metrics. The AR worker
guidance can be enhanced with additional sensor modules to enable
more advanced quality metrics that a DTC can predict from unknown
sensor data from both the HMD itself and an external sensor.

5 CONCLUSION

We propose to enhance AR worker guidance with automatic quality
assurance by using low-cost external inertial measurement units and
machine learning. We monitor the process via the HMD’s positional
tracking, and use sensor modules to collect additional data that we
analyze using ML, enhancing the sensing capabilities of AR worker
guidance with new insights, for individual tasks of a process.

We implemented an exemplary assembly use-case and attach
a sensor module to a hand-held tool to evaluate three levels of
quality metrics. While the HMD’s positional tracking is already good
enough for task-by-task guidance, the combination with the sensor
modules greatly enhances the system: we detect actions precisely
with an accuracy of 99.9%, and predict fine-grained quality metrics
reliably with a class specific recall between 92.3% and 97.8%.
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