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Abstract

Visual Odometry (VO) accumulates a positional drift in
long-term robot navigation tasks. Although Convolutional
Neural Networks (CNNs) improve VO in various aspects,
VO still suffers from moving obstacles, discontinuous ob-
servation of features, and poor textures or visual informa-
tion. While recent approaches estimate a 6DoF pose ei-
ther directly from (a series of) images or by merging depth
maps with optical flow (OF), research that combines abso-
lute pose regression with OF is limited.

We propose ViPR, a novel modular architecture for long-
term 6DoF VO that leverages temporal information and
synergies between absolute pose estimates (from PoseNet-
like modules) and relative pose estimates (from FlowNet-
based modules) by combining both through recurrent lay-
ers. Experiments on known datasets and on our own Indus-
try dataset show that our modular design outperforms state
of the art in long-term navigation tasks.

1. Introduction

Real-time tracking of mobile objects (e.g., forklifts in in-

dustrial areas) allows to monitor and optimize workflows

and tracks goods for automated inventory management.

Such environments typically include large warehouses or

factory buildings, and localization solutions often use a

combination of radio-, LiDAR- or radar-based systems, etc.

However, these solutions often require infrastructure or

they are costly in their operation. An alternative approach

is a (mobile) optical pose estimation based on ego-motion.

Such approaches are usually based on SLAM (Simultane-

ous Localization and Mapping), meet the requirements of

exact real-time localization, and are also cost-efficient.

Available pose estimation approaches are categorized

into three groups: classical, hybrid, and deep learning (DL)-

based methods. Classical methods often require an infras-

tructure that includes either synthetic (i.e., installed in the

environment) or natural (e.g., walls and edges) markers.

The accuracy of the pose estimation depends to a large ex-

tent on suitable invariance properties of the available fea-

tures such that they can be reliably recognized. However,

to reliably detect features, we have to invest a lot of ex-

pensive computing time [38, 27]. Additional sensors (e.g.,

inertial sensors, depth cameras, etc.) or additional con-

text (e.g., 3D models of the environment, prerecorded land-

mark databases, etc.) may increase the accuracy but also

increase system complexity and costs [44]. Hybrid meth-

ods [66, 7, 6, 23, 74] combine geometric and machine learn-

ing (ML) approaches. For instance, ML predicts the 3D

position of each pixel in world coordinates, from which

geometry-based methods infer the camera pose [16].

Recent DL approaches partly address the above men-

tioned issues of complexity and cost, and also aim for high

positioning accuracy, e.g., regression forests [51, 74] learn a

mapping of images to positions based on 3D models of the

environment. Absolute pose regression (APR) uses DL [63]

as a cascade of convolution operators to learn poses only

from 2D images. The pioneer PoseNet [33] has been ex-

tended by Bayesian approaches [31], long short-term mem-

ories (LSTMs) [77] and others [50, 26, 36, 11]. Recent APR

methods such as VLocNet [72, 59] and DGRNets [42] in-

troduce relative pose regression (RPR) to address the APR-

Figure 1: Our pose estimation pipeline solves the APR- and RPR-

tasks in parallel, and recurrent layers estimate the final 6DoF pose.

187

2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)

2160-7516/20/$31.00 ©2020 IEEE
DOI 10.1109/CVPRW50498.2020.00029

Authorized licensed use limited to: Universitatsbibliothek Erlangen Nurnberg. Downloaded on December 30,2021 at 20:47:05 UTC from IEEE Xplore.  Restrictions apply. 



task. While APR needs to be trained for a particular scene,

RPR may be trained for multiple scenes [63]. However,

RPR alone does not solve the navigation task.

For applications such as indoor positioning, existing ap-

proaches are not yet mature, i.e., in terms of robustness and

accuracy to handle real-world challenges such as changing

environment geometries, lighting conditions, and camera

(motion) artifacts. This paper proposes a modular fusion

technique for 6DoF pose estimation based on a PoseNet-

like module and predictions of a relative module for VO.

Our novel relative module uses the flow of image pixels be-

tween successive images computed by FlowNet2.0 [25]

to capture time dependencies in the camera movement in

the recurrent layers, see Fig. 1. Our model reduces the posi-

tioning error using this multitasking approach, which learns

both the absolute poses based on monocular (2D) imaging

and the relative motion for the task of estimating VO.

We evaluate our approach first on the small-scale

7-Scenes [66] dataset. As other datasets are unsuitable

to evaluate continuous navigation tasks we also release a

dataset that can be used to evaluate various problems aris-

ing from real industrial scenarios such as inconsistent light-

ing, occlusion, dynamic environments, etc. We benchmark

our approach on both datasets against existing approaches

[33, 77] and show that we consistently outperform the ac-

curacy of their pose estimates.

The rest of the paper is structured as follows. Section 2

discusses related work. Section 3 provides details about our

architecture. We discuss available datasets and introduce

our novel Industry dataset in Section 4. We present experi-

mental results in Section 5 before Section 6 concludes.

2. Related Work
SLAM-driven 3D point registration methods enable pre-

cise self-localization even in unknown environments. Al-

though VO has made remarkable progress over the last

decade, it still suffers greatly from scaling errors of real

and estimated maps [43, 69, 49, 29, 34, 35, 40, 54, 4, 39].

With more computing power, Visual Inertial SLAM com-

bines VO with Inertial Measurement Unit (IMU) sensors to

partly resolve the scale ambiguity, to provide motion cues

without visual features [43, 70, 29], to process more fea-

tures, and to make tracking more robust [69, 34]. Mul-

tiple works combine global localization in a scene with

SLAM/(Inertial) VO [46, 17, 55, 64, 22, 52, 28]. However,

recent SLAM methods do not yet meet industry-strength

with respect to accuracy and reliability [57, 18] as they need

undamaged, clean and undisguised markers [39, 30] and as

they still suffer from long-term stability and the effects of

movement, sudden acceleration and occlusion [75]. SIFT-

like point-based features [45] for the localization from land-

marks [3, 24, 41, 78] require efficient retrieval methods, use

VLAD encodings such as DenseVLAD [71], use anchor

points such as AnchorNet [60], or use RANSAC-based

optimization such as DSAC [6] and ActiveSearch [61].

VO primarily addresses the problem of separating ego-

from feature-motion and suffers from area constraints,

poorly textured environments, scale drift, a lack of an initial

position, and thus inconsistent camera trajectories [10]. In-

stead, PoseNet-like architectures (see Sec. 2.1) that esti-

mate absolute poses on single-shot images are more robust,

less compute-intensive, and can be trained in advance on ap-

plication data. Unlike VO, they do not suffer from a lack of

initial poses and do not require access to camera parameters,

good initialization, and handcrafted features [65]. Although

the joint estimation of relative poses may contribute to in-

creasing accuracy (see Sec. 2.2), such hybrid approaches

still suffer from dynamic environments, as they are often

trained offline in quasi-rigid environments. While optical

flow (see Sec. 2.3) addresses these challenges it has not yet

been combined with APR for 6DoF self-localization.

2.1. Absolute Pose Regression (APR)

Methods that derive a 6DoF pose directly from images

have been studied for decades. Therefore, there are cur-

rently many classic methods whose complex components

are replaced by machine learning (ML) or DL. For in-

stance, RelocNet [2] learns metrics continuously from

global image features through a camera frustum overlap

loss. CamNet [15] is a coarse (image-based)-to-fine (pose-

based) retrieval-based model that includes relative pose re-

gression to get close to the best database entry that contains

extracted features of images. NNet [37] queries a database

for similar images to predict the relative pose between im-

ages and a RANSAC [67] solves the triangulation to pro-

vide a position. While those classic approaches have al-

ready been extended with DL-components their pipelines

are expensive as they embed feature matching and projec-

tion and/or manage a database. Most recent (and simple)

DL-based also outperform their accuracies.

The key idea of PoseNet [33] and its variants [32,

31, 20, 77, 76, 79, 58, 65, 56, 66] among others such as

BranchNet [56] and Hourglass [66] is to use a CNN

for camera (re-)localization. PoseNet works with scene

elements of different scales and is partially insensitive to

light changes, occlusions and motion blur. However, while

Dense PoseNet [33] crops subimages, PoseNet2 [32]

jointly learns network and loss function parameters, [31]

links a Bernoulli function and applies variational infer-

ence [20] to improve the positioning accuracy. However,

those variants work with single images, and hence, do not

use the temporal context (which is available in continuous

navigation tasks), that could help to increase accuracy.

In addition to PoseNet+LSTM [77], there are also

similar approaches that exploit time-context that is inher-

ently given by consecutive images (i.e., DeepVO [79],
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Figure 2: Optical flow (OF): input image (left); OF-vectors as

RPR-input (middle); color-coded visualization of OF [1] (right).

ContextualNet [58], and VidLoc [12]). Here, the key-

idea is to identify temporal connections in-between the fea-

ture vectors (extracted from images) with LSTM-units and

to only track feature correlations that contribute the most to

the pose estimation. However, there are hardly any long-

term dependencies between successive images, and there-

fore LSTMs give worse or equal accuracy to, for example,

simple averaging over successively estimated poses [65].

Instead, we combine estimated poses from time-distributed

CNNs with estimates of the OF to maintain the required

temporal context in the features of image series.

2.2. APR/RPR-Hybrids

In addition to approaches that derive a 6DoF pose di-

rectly from an image there are hybrid methods that combine

them with VO to increase the accuracy. VLocNet [72] is

closely related to our approach as it estimates a global pose

and combines it with VO (but it does not use OF). To further

improve the (re-)localization accuracy VLocNet++ [59]

uses features from a semantic segmentation. However, we

use different networks and do not need to share weights be-

tween VO and the global pose estimation. DGRNets [42]

estimates both the absolute and relative poses, concatenates

them, and uses recurrent CNNs to extract temporal rela-

tions between consecutive images. This is similar to our ap-

proach but we estimate the relative motion with OF, which

allows us to train in advance on large datasets, making the

model more robust. MapNet [8] learns a map representa-

tion from input data, combines it with GPS, inertial data,

and unlabeled images, and uses pose graph optimization

(PGO) to combine absolute and relative pose predictions.

However, compared to all other methods the most accurate

extension of it, MapNet+PGO, does not work on purely vi-

sual information, but exploits additional sensors.

2.3. Optical Flow

Typically, VO uses OF to extract features from image

sequences. Motion fields, see Fig. 2 (middle), are used to

estimate trajectories of pixels in a series of images. For

instance, Flowdometry [53] and LS-VO [13] estimate

displacements and rotations from OF. [48] proposed a VO-

based dead reckoning system that uses OF to match fea-

tures. [80] combined two CNNs to estimate the VO-motion:

FlowNet2-ss [25] estimates the OF and PCNN [14]

links two images to process global and local pose informa-

tion. However, to the best of our knowledge, we are the

first to propose an OF-based architecture that estimates the

relative camera movement through RNNs, using OF [25].

3. Proposed Model
After a data preprocessing that crops subimages of size

224 ˆ 224 ˆ 3 from a sequence of four images, our pose

regression pipeline consists of three parts (see Fig. 3): an

APR-network, a RPR-network, and a 6DoF pose estimation

(PE) network. PE uses the outputs of the APR- and RPR-

networks to provide the final 6DoF pose.

3.1. Absolute Pose Regression (APR) Network

Our APR-network predicts the 6DoF camera pose from

three input images based on the original PoseNet [33]

model (i.e., essentially a modified GoogLeNet [68] with a

regression head instead of a softmax) to train and predict

the absolute positions p P R
3 in the Euclidean space and

the absolute orientations q P R
4 as quaternions. From a

single monocular image I the model predicts the pose

x̃ “ rp̃, q̃s, (1)

as approximations to the actual p and q. As the origi-

nal model learns the image context, based on shape and ap-

pearance of the environment, but does not exploit the time

context and relation between consecutive images [32], we

adapted the model to a time-distributed variant. Hence, in-

stead of a single image the new model receives three (con-

secutive) input images (at timesteps tn´1, tn, and tn`1), see

top part of Fig. 3, uses three separate dense layers (one for

each pose) with 2,048 neurons each, and each of the dense

layers yields a pose. The middle pose yields the most accu-

rate position for the image at time step tn.

3.2. Relative Pose Regression (RPR) Network

Our RPR-network uses FlowNet2.0 [25] on each con-

secutive pairs of the four input images to compute an ap-

proximation of the OF (see Fig. 2) and to predict three rela-

tive poses for later use. As displacements of similar length

but from different camera viewing directions result in dif-

ferent OFs, the displacement and rotation of the camera

between pairwise images must be relative to the camera’s

viewing direction of the first image. Therefore, we trans-

form each camera’s global coordinate systems pxn, yn, znq
to the same local coordinate system px̃n, ỹn, z̃nq by¨

˝
x̃n

ỹn
z̃n

˛
‚“ R

¨
˝
xn

yn
zn

˛
‚, (2)

with the rotation matrix R. The displacement

Δx̃n,Δỹn,Δz̃n is the difference between the transformed

coordinate systems. The displacement in global coordinates
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Figure 3: Pipeline of the ViPR-architecture. Data preprocessing (grey): Four consecutive input images (tn´1, . . . , tn`2) are center

cropped. For the absolute network the mean is subtracted. For the relative network the OF is precomputed by FlowNet2.0 [25]. The

absolute poses are predicted by our time-distributed APR-network (yellow). The RPR-network (purple) predicts the transformed relative
displacements and rotations on reshaped mean vectors of the OF with (stacked) LSTM-RNNs. The PE modules (green) concatenates the

absolute and relative modules and predicts the absolute 6DoF poses with stacked LSTM-RNNs.

is obtained by a back-transformation of the predicted dis-

placement, such that

RT “ R´1 and RT R “ RRT “ I. (3)

Fig. 4 shows the structure of the RPR-network. Similar

to the APR-network, the RPR-network also uses a stack of

images, i.e., three OF-fields from the four input images of

the timesteps tn´1, . . . , tn`2, to include more time context.

In a preliminary study, we found that our recurrent units

struggle to remember temporal features when the direct in-

put of the OF is too large (raw size 224ˆ224ˆ3 px). This is

in line with findings from Walch et al. [77]. Hence, we split

the OF in zones and compute the mean value for each the

u- and v-direction. We reshape 16ˆ 16 number of zones in

both directions to the size 2ˆ 256. The final concatenation

results in a smaller total size of 3ˆ 512. The LSTM-output

is forwarded to 2 FC-layers that regress both the displace-

ment (size 3ˆ 3) and rotation (size 3ˆ 4).

Figure 4: Pipeline of the relative pose regression (RPR) architec-

ture: Data preprocessing, OF- and mean computation, reshaping,

and concatenation, 3 recurrent LSTM units, and 2 FC-layers that

yield the relative pose.

The 2 FC-layers use the following loss function to pre-

dict the relative transposed poses Δp̃tr and Δq:

L “ α2

∥
∥Δp̃tr ´Δptr

∥
∥
2
` β2

∥
∥
∥
∥
Δq̃´ Δq

‖Δq‖2

∥
∥
∥
∥
2

. (4)

The first term accounts for the predicted and transformed

displacement Δp̃tr to the ground truth displacement Δptr

with an L2-norm. The second term quantifies the error of

the predicted rotation to the normalized ground truth rota-

tion using an L2-norm. Both terms are weighted by the hy-

perparameters α2 and β2. A preliminary grid search with a

fixed α2 “ 1 revealed an optimal value for β2 that depends

on the scaling of the environment.

3.3. 6DoF Pose Estimation (PE) Network

Our PE-network predicts absolute 6DoF poses from the

outputs of both the APR- and RPR-networks, see Fig. 5.

The PE-network takes as input the absolute position pi “
pxi, yi, ziq, the absolute orientation qi “ pwi, pi, qi, riq, the

relative displacement Δpi “ pΔxi,Δyi,Δziq, and the ro-

tation change Δqi “ pΔwi,Δpi,Δqi,Δriq. As we feed

poses from three sequential timesteps tn´1, tn, and tn`1

as input to the model it is implicitly time-distributed. The

2 stacked LSTM-layers and the 2 FC-layers return a 3DoF

absolute position p P R
3 and a 3DoF orientation q P R

4

using the following loss:

LpP,ΔP q “ α3 ‖p̃´ p‖2 ` β3

∥
∥
∥
∥

q̃´ q
‖q‖2

∥
∥
∥
∥
2

. (5)
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Figure 5: Pipeline of the 6DoF PE-architecture. The input tensor

(3 ˆ 14) contains absolute positions and orientations and relative

displacements and rotations at timesteps tn´1, tn, tn`1. 2 stacked

LSTMs process the tensor and 2 FC-layers return the pose.

Again, in a preliminary grid search we chose L2-norms

with a fixed β3 “ 1 that revealed an optimal value for α3.

4. Evaluation Datasets

To train our network we need two different types of im-

age data: (1) images annotated with their absolute poses

for the APR-network, and (2) images of OF, annotated with

their relative poses for the RPR-network.

Datasets to evaluate APR. Publicly available

datasets for absolute pose regression (Cambridge
Landmarks [33] and TUM-LSI [77]) either lack accurate

ground truth labels or the proximity between consecu-

tive images is too large to embed meaningful temporal

context. The Aalto University [37], Oxford
RobotCar [47], DeepLoc [59] and CMU Seasons [62]

datasets solve the small-scale issue of the 7-Scenes [66]

dataset, but are barely used for evaluation of state-of-the-art

techniques or consider only automotive-driving scenarios.

The 12-Scenes [73] dataset is only used by DSAC++ [5].

For our industrial application these datasets are insufficient.

7-Scenes [66] only embeds scenes with less training

data and only enables small scene-wise evaluations,

but is mainly used for evaluation. Hence, to compare

ViPR with recent techniques we use the 7-Scenes [66]

dataset. Furthermore, we recorded the Industry dataset

(see Sec. 4.1) that embeds three different industrial-like

scenarios to allow a comprehensive and detailed evaluation

with different movement patterns (such as slow motion and

fast rotation).

Datasets to evaluate RPR. To evaluate the perfor-

mance of the RPR and its contribution to ViPR, we

also need a dataset with a close proximity between con-

secutive images. This is key to calculate the relative

movement with OF. However, most publicly available

datasets (Middlebury [1], MPI Sintel [9], KITTI
Vision [21], and FlyingChairs [19]) either do not

meet this requirement or the OF pixel velocities do not

match those of real-world applications. Hence, we directly

calculate the OF from images with FlowNet2.0 [25] to

train the RPR on it. Our novel Industry dataset allows this,

while retaining a large, diverse environment with hard real-

world conditions, as described in the following.

4.1. Industry Dataset

We designed the Industry dataset to suite the require-

ments of both the APR- and the RPR-network and published

the data1 at large-scale (1, 320m2) using a high-precision

(ă 1mm) laser-based reference system. Each scenario

presents different challenges (such as dynamic ego-motion

with motion blur), various environmental characteristics

(such as different geometric scales, light changes, i.e., ar-

tificial and natural light), and ambiguously structured ele-

ments, see Fig. 6.

Industry Scenario #1 [44] has been recorded with 8

cameras (approx. 60˝ field-of-view (FoV) each) mounted

on a stable apparatus to cover 360˝ (with overlaps) that

has been moved automatically at a constant velocity of ap-

prox. 0.3m{s. The height of the cameras is at 1.7 m.

The scenario contains 521,256 images (640 ˆ 480 px) and

densely covers an area of 1,320 m2. The environment im-

itates a typical warehouse scenario under realistic condi-

tions. Besides well-structured elements such as high-level

racks with goods, there are also very ambiguous and ho-

mogeneously textured elements (e.g., blank white or dark

black walls). Both natural and artificial light illuminates

volatile structures such as mobile work benches. While the

training dataset is composed of a horizontal and vertical zig-

zag movement of the apparatus the test datasets movements

vary to cover different properties for a detailed evaluation,

e.g., different environmental scalings (i.e., scale transition,

cross, large scale, and small scale), network generalization

(i.e., generalize open, generalize racks, and cross), fast ro-

tations (i.e., motion artifacts was recorded on a forklift at

2.26 m height) and volatile objects (i.e., volatility).

Industry Scenario #2 uses three 170˝ cameras (with

overlaps) on the same apparatus at the same height. The

recorded 11,859 training images (1, 280ˆ720 px) represent

a horizontal zig-zag movement (see Fig. 7a) and 3,096 test

images represent a diagonal movement (see Fig. 7b). Com-

pared to Scenario #1 this scenario has more variation in its

velocities (between 0m{s and 0.3m{s, SD 0.05m{s).

Industry Scenario #3 uses four 170˝ cameras (with

overlaps) on a forklift truck at a height of 2.26m. Both

the training and test datasets represents camera movements

at varying, faster, and dynamic speeds (between 0m{s and

1.5m{s, SD 0.51m{s). This makes the scenario the most

challenging one. The training trajectory (see Fig. 7c) con-

sists of 4,166 images and the test trajectory (see Fig. 7d)

consists of 1,687 images. In contrast to the Scenarios #1 and

#2 we train and test a typical industry scenario on dynamic

movements of a forklift truck. However, one of cameras’

images were corrupted in the test dataset, and thus, not used

in the evaluation.

1Industry dataset available at: https://www.iis.fraunhofer.de/warehouse.

Provided are raw images and corresponding labels: p and q.
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(a) Scenario #1 example images. (b) Scenario #2 example images. (c) Scenario #3 setup and example image.

Figure 6: Industry datasets. Setup of the measurement environment (i.e., forklift truck, warehouse racks and black walls) and example

images with normal (a) and wide-angle (b+c) cameras.

5. Experimental Results
To compare ViPR with state-of-the-art results, we first

briefly describe our parameterization of PoseNet [33] and

PoseNet+LSTM [77] in Sec. 5.1. Next, Sec. 5.2 presents

our results. We highlight the performance of ViPR’s sub-

networks (APR, APR+LSTM) individually, and investigate

both the impact of RPR and PE on the final pose estima-

tion accuracy of ViPR. Sec. 5.3 shows results of the RPR-

network. Finally, we discuss general findings and show run-

times of our models in Sec. 5.4.

For all experiments we used an AMD Ryzen 7 2700 CPU

3.2 GHz equipped with one NVidia GeForce RTX 2070 with

8 GB GDDR6 VRAM. Tab. 1 shows the median error of

the position in m and the orientation in degrees. The sec-

ond column reports the spatial extends of the datasets. The

last column reports the improvement in position accuracy

of ViPR (in %) over APR-only.

5.1. Baselines

As a baseline we report the initially described results on

7-Scenes of PoseNet [33] and PoseNet+LSTM [77]

(in italic). We further re-implemented the initial variant of

PoseNet and trained it from scratch with α1 “ 1, β1 “ 30
(thus optimizing for positional accuracy at the expense of

orientation accuracy). Tab. 1 (cols. 3 and 4) shows our

implementation’s results next to the initially reported ones

(on 7-Scenes). We see that (as expected) the results of

the PoseNet implementations differ due to changed values

for α1 and β1 in our implementation.

5.2. Evaluation of the ViPR-Network

In the following, we evaluate our method in multiple sce-

narios with different distinct challenges for the pose estima-

tion task. 7-Scenes focuses on difficult motion blur con-

ditions of typical human motion. We then use the Indus-
try Scenario #1 to investigate various challenges at a larger

scale, but with mostly constant velocities. Industry Scenar-

(a) Training. (b) Testing. (c) Training. (d) Testing.

Figure 7: Exemplary trajectories of Industry Scenarios #2 (a-b)

and #3 (c-d) to assess the generalizability of ViPR.

ios #2 and #3 then focus on dynamic, fast ego-motion of a

moving forklift truck at large-scale.

7-Scenes [66]. For both architectures (PoseNet and

ViPR), we optimized β to weight the impact of position and

orientation such that it yields the smallest total median error.

Both APR+LSTM and ViPR return a slightly lower pose es-

timation error of 0.33m and 0.32m than PoseNet+LSTM

with 0.34m. ViPR yields an average improvement of the

position accuracy of 3.18% even in strong motion blur sit-

uations. The results indicate that ViPR relies on a plau-

sible optical flow component to achieve performance that

is superior to the baseline. In situations of negligible mo-

tion between frames the median only improves by 0.02m.

However, the average accuracy gain still shows that ViPR

performs en par or better than the baselines.

Stable motion evaluation. For the Industry Scenario #1
dataset, we train the models on the zig-zag trajectories, and

test them on specific sub-trajectories with individual chal-

lenges, but at almost constant velocity. In total, ViPR im-

proves the position accuracy by 12.27% on average (min.:

4.03%; max.: 25.31%) while the orientation error is simi-

lar for most of the architectures and test sets.

In environments with volatile features, i.e., objects that

are only present in the test dataset, we found that ViPR (with

optical flow) is significantly (6.41%) better compared to

APR-only. However, the high angular error of 77.54˝ in-

dicates an irrecoverable degeneration of the APR-part. In

tests with different scaling of the environment, we think that

ViPR learns an interpretation of relative and absolute posi-

tion regression, that works both in small and large proxim-

ity to environmental features, as ViPR improves by 15.52%
(scale trans.) and 14.41% (small scale) or 10.68% (large

scale). When the test trajectories are located within areas

that embed only few or no training samples (gener. racks

and open), ViPR still improves over other methods with

4.03-11.75%. The highly dynamic test on a forklift truck

(motion artifacts) is exceptional here as only the test dataset

contains dynamics and blur, and hence, challenges ViPR

most. However, ViPR still improves by 10.01% over APR-

only, despite the data dynamic’s absolute novelty.

In summary, ViPR decreases the position median signif-

icantly by about 2.53m than only APR+LSTM (4.89m).

This and the other findings are strong indicators that the rel-

ative component RPR significantly supports the final pose

estimation of ViPR.
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Table 1: Pose estimation results (position and orientation median error in meters m and degrees (˝)) and total improvement of PE in % on

the 7-Scenes [66] and Industry datasets. The best results are bold and underlined ones are additionally referenced in the text.

Dataset Spatial PoseNet [33] PoseNet+ APR-only APR+LSTM ViPR* Improv.

extend (m) (original/our param.) LSTM [77] (our param.) ViPR (%)

chess 3.0ˆ2.0ˆ1.0 0.32 / 0.24 4.06 / 7.79 0.24 5.77 0.23 7.96 0.27 9.66 0.22 7.89 + 1.74

7
-
S
c
e
n
e
s

[6
6
] fire 2.5ˆ1.0ˆ1.0 0.47 / 0.39 14.4 / 12.40 0.34 11.9 0.39 12.85 0.50 15.70 0.38 12.74 + 2.56

heads 2.0ˆ0.5ˆ1.0 0.29 / 0.21 6.00 / 16.46 0.21 13.7 0.22 16.48 0.23 16.91 0.21 16.41 + 3.64

office 2.5ˆ2.0ˆ1.5 0.48 / 0.33 3.84 / 10.08 0.30 8.08 0.36 10.11 0.37 10.83 0.35 9.59 + 4.01

pumpkin 2.5ˆ1.0ˆ1.0 0.47 / 0.45 8.42 / 8.70 0.33 7.00 0.39 8.57 0.86 49.46 0.37 8.45 + 5.12

red kitchen 4.0ˆ3.0ˆ1.5 0.59 / 0.41 8.64 / 9.08 0.37 8.83 0.42 9.33 1.06 50.67 0.40 9.32 + 4.76

stairs 2.5ˆ2.0ˆ1.5 0.47 / 0.36 6.93 / 13.69 0.40 13.7 0.31 12.49 0.42 13.50 0.31 12.65 + 0.46

I total 0.44 / 0.34 7.47 / 11.17 0.31 9.85 0.33 11.11 0.53 23.82 0.32 11.01 + 3.18

In
d
u
st

ry
Sc

en
ar

io
1

[4
4
] cross 24.5ˆ16.0 – / 1.15 – / 0.75 – 0.61 0.53 4.42 0.21 0.46 0.60 + 25.31

gener. open 20.0ˆ17.0 – / 1.94 – / 11.73 – 1.68 11.07 3.36 2.95 1.48 10.86 + 11.75

gener. racks 8.5ˆ18.5 – / 3.48 – / 6.01 – 2.48 1.53 3.90 0.61 2.38 1.95 + 4.03

large scale 19.0ˆ19.0 – / 2.32 – / 6.37 – 2.37 9.82 4.99 1.61 2.12 8.64 + 10.68

motion art. 37.0ˆ17.0 – / 7.43 – / 124.94 – 7.48 131.30 8.18 139.37 6.73 136.6 + 10.01

scale trans. 28.0ˆ19.5 – / 2.17 – / 3.03 – 1.94 6.46 5.63 0.58 1.64 6.29 + 15.52

small scale 10.0ˆ11.0 – / 3.78 – / 9.18 – 4.09 20.75 4.46 6.06 3.50 15.74 + 14.41

volatility 29.0ˆ13.0 – / 2.68 – / 78.52 – 2.09 77.68 4.16 78.73 1.96 77.54 + 6.41

I total – / 3.12 – / 30.07 – 2.82 32.30 4.89 28.76 2.53 32.28 + 12.27

In
d
u
st

ry

Sc
en

.2

cam #0 6.5ˆ9.0 – / 0.49 – / 0.21 – 0.22 0.29 1.49 0.14 0.16 3.37 + 26.24

cam #1 6.5ˆ9.0 – / 0.15 – / 0.38 – 0.23 0.35 2.68 0.17 0.12 2.75 + 46.49

cam #2 6.5ˆ9.0 – / 0.43 – / 0.19 – 0.37 0.13 0.90 0.15 0.30 1.84 + 17.87

I total – / 0.36 – / 0.26 – 0.27 0.26 1.69 0.15 0.20 2.65 + 30.20

In
d
u
st

ry

Sc
en

.3

cam #0 6.0ˆ11.0 – / 0.41 – / 1.00 – 0.34 1.26 0.72 1.31 0.27 1.43 + 20.64

cam #1 6.0ˆ11.0 – / 0.32 – / 1.07 – 0.26 1.11 0.88 1.27 0.21 1.06 + 20.13

cam #2 6.0ˆ11.0 – / 0.32 – / 1.60 – 0.36 1.62 0.72 1.74 0.32 1.38 + 11.47

I total – / 0.35 – / 1.22 – 0.32 1.33 0.77 1.44 0.27 1.29 + 17.41

Industry Scenario #2 is designed to evaluate for un-

known trajectories. Hence, training trajectories represent

an orthogonal grid, and test trajectories are diagonal. In

total, ViPR improves the position accuracy by 30.2% on

average (min.: 17.87%; max.: 46.49%). Surprisingly, the

orientation error is comparable for all architectures, except

ViPR. We think that this is because ViPR learns to opti-

mize its position based on the APR- and RPR- orientations,

and hence, exploits these orientations to improve its posi-

tion estimate, that we prioritized in the loss function. APR-

only yields an average position accuracy of 0.27m, while

the pure PoseNet yields position errors of 0.36m on av-

erage, but APR+LSTM results in an even worse accuracy

of 1.69m. Instead, the novel ViPR outperforms all signifi-

cantly with 0.2m. Compared to our APR+LSTM approach,

we think that ViPR on the one hand interprets and compen-

(a) Scenario #2. (b) Scenario #3.

Figure 8: Exemplary comparison of APR, ViPR, and a baseline

(ground truth) trajectory of the Industry datasets.

sates the (long-term) drift of RPR and on the other hand

smooths the short-term errors of APR, as PE counteracts the

accumulation of RPR’s scaling errors with APR’s absolute

estimates. Here, the synergies of the networks in ViPR are

particularly effective. This is also visualized in Fig. 8a: the

green (ViPR) trajectory aligns more smoothly to the blue

baseline when the movement direction changes. This also

indicates that the RPR component is necessary to generalize

to unknown trajectories and to compensate scaling errors.

Dynamic motion evaluation. In contrast to the other

datasets, the Industry Scenario #3 includes fast, large-scale,

and high dynamic ego-motion in both training and test

datasets. However, all estimators result in similar find-

ings as Scenario #2 as both scenarios embed motion dy-

namics and unknown trajectory shapes. Accordingly, ViPR

again improves the position accuracy by 17.41% on aver-

age (min.: 11.47%; max.: 20.64%), but this time exhibits

very similar orientation errors. Improved orientation accu-

racy compared to Scenario #2 is likely due to diverse orien-

tations available in this dataset’s training.

Fig. 8b shows exemplary results that visualize how ViPR

handles especially motion changes and motion dynamics

(see the abrupt direction change between x P r8 ´ 9sm
and y P r14 ´ 16sm). The results also indicate that ViPR

predicts the smoothest and most accurate trajectories on un-

known trajectory shapes (compare the trajectory segments

between x P r11 ´ 12sm and y P r14 ´ 16sm). We

think the reason why ViPR significantly outperforms APR
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Figure 9: Exemplary RPR-results (displacements m) against the

baseline (ground truth) on the Scenario #3 dataset (see Fig. 7d).

by 20.13% here is because of the synergy of APR, RPR,

and PE. RPR contributes most in fast motion-changes, i.e.,

in motion blur situation. The success of RPR may also

indicate that RPR differentiates between ego- and feature-

motion to more robustly estimate a pose.

5.3. Evaluation of the RPR-Network

We use the smaller FlowNet2-s [25] variant of

FlowNet2.0 as this has faster runtimes (140 Hz), and

use it pretrained on the FlyingChairs [19], ChairsSDHom

and FlyingThings3D datasets. To highlight that RPR con-

tributes to the accuracy of the final pose estimates of ViPR,

we explicitly test it on the Industry Scenario #3 that embeds

dynamic motion of both ego- and feature-motion. The dis-

tance between consecutive images is up to 20 cm, see Fig. 9.

This results in a median error of 2.49 cm in x- and 4.09 cm
in y-direction on average (i.e., the error is between 12.5%
and 20.5%). This shows that the RPR yields meaningful re-

sults for relative position regression in a highly dynamic and

difficult setting. It furthermore appears to be relatively ro-

bust in its predictions despite both ego- and feature-motion.

5.4. Discussion

6DoF Pose Regression with LSTMs. APR-only in-

creases the positional accuracy over PoseNet for all

datasets, see Tab. 1. We found that the position er-

rors increase when we use methods with independent and

single-layer LSTM-extensions [77, 79, 58, 65] on both the

7-Scenes and the Industry datasets, by 0.04m up to

2.07m. This motivated us to investigate stacked LSTM-

layers only for the RPR- and PE-networks. We support the

statement of Seifi et al. [65] that the motion between con-

secutive frames is too small, and thus, naive CNNs are al-

ready unable to embed them. Hence, additionally connected

LSTMs are also unable to discover and track meaningful

temporal and contextual relations between the features.

Influence of RPR to ViPR. To figure out the informa-

tion gain of the RPR-network we also constructed ViPR in a

closed end-to-end architecture through direct concatenation

of the CNN-encoder-output (APR) and the LSTM-output

(RPR). For a smaller OF-input (3 ˆ 3) of the RPR-model

the accuracy of the 7-Scenes [66] dataset increases, but

decreases for the Industry dataset. This stems from the fact

that the relative movements of the 7-Scenes dataset are

too small (ă 2 cm) compared to the Industry dataset (ap-

prox. 20 cm). Hence, ViPR’s contribution is limited here.

Comparison of ViPR to state-of-the-art methods.
VLocNet++ [59] currently achieves the best results on

7-Scenes [66], but due to the small relative movement

and the high ground truth error compared to VLocNet’s

results a plausible evaluation is not possible regarding in-

dustrial applications. MapNet [8] achieves (on average)

better results than ViPR on the 7-Scenes dataset, but re-

sults in a similar error, e.g., 0.30m and 12.08˝ on the stairs
set against ViPR’s 0.31m and 12.65˝. MapNet has an im-

provement of 8.7% over PoseNet2 [32] and achieves

41.4m and 12.5 ˝ on the RobotCar [47] dataset. How-

ever, a fair evaluation on this dataset with state-of-the-art

methods requires results and code from VLocNet [72, 59].

Runtimes. The training of the APR takes 0.86 s per

iteration for a batch size of 50 (GoogLeNet [68]) on our

hardware setup. The training of the RPR and PE is faster

(0.065 s) even at a higher batch size of 100, as these models

are smaller (214,605, resp. 55,239, parameters). Hence, it

is possible to retrain the PE-network quickly upon environ-

ment changes. The inference time of ViPR is between 7 ms
and 9 ms per sample (PoseNet: avg. 5 ms, FlowNet2-s:

avg. 9 ms). In addition, ViPR does not require domain

knowledge to provide scenario-dependent applicability, nor

does it need a compute-intensive matcher like brute force

or RANSAC [67, 6]. However, instead of PoseNet, ViPR

can also use such classical approaches in its modular pro-

cess pipeline. DenseVLAD [71] and classical approaches

are 10x (200-350 ms/sample) more computationally inten-

sive than today’s deep pose regression variants.

6. Conclusion

In this paper, we addressed typical challenges of

learning-based visual self-localization of a monocular cam-

era. We introduced a novel DL-architecture that makes use

of three modules: an absolute and a relative pose regres-

sor module, and a final regressor that predicts a 6DoF pose

by concatenating the predictions of the two former modu-

larities. To show that our novel architecture improves the

absolute pose estimates, we compared it with a publicly

available dataset and proposed novel Industry datasets that

enable a more detailed evaluation of different (dynamic)

movement patterns, generalization, and scale transitions.
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