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ABSTRACT

Embodying users through avatars based on motion tracking and re-
construction is an ongoing challenge for VR application developers.
High quality VR systems use full-body tracking or inverse kinemat-
ics to reconstruct the motion of the lower extremities and control the
avatar animation. Mobile systems are limited to the motion sensing
of head-mounted displays (HMDs) and typically cannot offer this.

We propose an approach to reconstruct gait motions from a single
head-mounted accelerometer. We train our models to map head
motions to corresponding ground truth gait phases. To reconstruct
leg motion, the models predict gait phases to trigger equivalent
synthetic animations. We designed four models: a threshold-based,
a correlation-based, a Support Vector Machine (SVM) -based and a
bidirectional long-term short-term memory (BLSTM) -based model.
Our experiments show that, while the BLSTM approach is the most
accurate, only the correlation approach runs on a mobile VR system
in real time with sufficient accuracy. Our user study with 21 test
subjects examined the effects of our approach on simulator sickness
and showed significantly less negative effects on disorientation.

Index Terms: Human-centered computing—Interaction
paradigms—Virtual reality

1 INTRODUCTION

Avatars, virtual representations that are driven by human behav-
ior [3], can embody the user in VR [2]. Previous work achieve
embodiment of avatars in high-end VR through motion tracking and
retargeting of behavior such as hand [1], body [19] or face and gaze
features [29], or combinations [18]. They require data from cer-
tain marker-based tracking systems, additional (embedded) cameras
or controllers to solve human poses or to morph target animations
(blendshape) [20]. The resulting avatar embodiment may support the
overall VR simulation experience and may avoid simulator sickness
effects [17] as it provides visual orientation through motion represen-
tation [30]. A more realistic reconstruction of the physical motion
may lead to a higher plausibility of the simulation [24], especially
for low-end VR systems.

Such a reconstruction of motion is typically based on a motion
classification and an appropriate matching to a known animation
database. Its advantage is that input signals can be substituted
as soon as the ground truth knowledge has been acquired. Thus,
it inherits the sensing, the recognition, and the synthesis of the
approximated motion to achieve an appropriate output visualization.
Cha et al. [5] present an approach to mobile face and body tracking,
but with additional and more invasive head-mounted sensors that
are not available in mobile low-end VR systems. Because these
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Figure 1: Our approach to gait reconstruction for mobile VR. Left: We
automatically annotate data with reference inertial measurement unit
(IMU) sensors (SFR and SFL) during the training phase. We position
the user with markers of our reference system (SR). For real-time
gait reconstruction, we only use (SH ), the acceleration sensor of the
head-mounted display (HMD). Center: We recognize gait phases
from the signal magnitude vector (SMV) of the acceleration (blue
curve): standing, walking, and turning. Right: We synchronize the
gait animation of the avatar using the predicted gait phases.

low-end tracking approaches are still limited by remaining physical
limitations, and therefore their motion reconstruction ability is also
limited, they motivate the development of more complex motion
tracking and reconstruction approaches.

We propose an approach to reconstruct the motion of the lower
extremities to avatars in VR using data from a single IMU. We formu-
late the problem as a supervised classification problem and compare
four methods: a threshold-based, a Pearson-correlation-based, a
cubic SVM, and a BLTSM. We found that the BLSTM offers the
highest classification confidence, but requires computational effort
that does not meet real-time requirements on mobile VR devices. On
the other hand, the correlation-based approach offers both sufficient
accuracy and less computing effort at high refresh rates. In a study
with 21 participants, we also examined our approach to determine
whether the simulator sickness, which may be influenced by the lack
of visual reference points such as legs or feet, can be alleviated by
our reconstruction. An avatar representation using our correlation-
based approach showed significantly fewer disorientation symptoms
than the threshold-based version and without an avatar at all.

We organize the paper as follows. Sect. 2 reviews related work.
Sect. 3 introduces our motion reconstruction methods that we evalu-
ate in Sect. 4. Sect. 5 evaluates the correlation method and Sect. 5
discusses the results of our user study. Sect. 6 concludes.

2 RELATED WORK

User embodiment in virtual environments (VE) is described as the ap-
propriate representation of users to others, but also to themselves [2],
typically in the form of avatars, virtual characters controlled in real
time by the behavior of the user [3]. Previous work shows that
synchronous visuomotor or visuotactile stimulation may lead to a
higher degree of body ownership and agency [11], the latter de-
scribes the feeling of control over the avatar. This in turn implies
that synchronous motion reconstruction and retargeting of motions
on avatars can also foster the suspension of disbelief [24]. Therefore,
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most of the previous work focused on mapping the reconstructed
motion to a virtual representation to allow for a more sophisticated
user embodiment, especially for high-end VR systems that use multi-
ple additional sensors. In mobile low-end VR applications, however,
real-time reconstruction of the visually appealing and natural human
motion to the avatar representation, especially with limited sensor
input, is still a challenging task.

2.1 Full body Motion Reconstruction
For high-end VR, there are approaches that recognize the user’s
action and search for and display appropriate full body motion
from a database [10,32]. Others synthesize a sequence of motions
using existing motions in a database to reconstruct motions [14, 28].
However, database search results in an additional delay, and these
methods require input signals from expensive and elaborate full body
motion capturing systems to control or reconstruct the motion. To
reduce costs, others use multiple inertial sensors [23,28] and focus
on synthesizing natural-looking motion sequences using a reduced
number of sensors [7,12,13,27] that need to be rigidly attached to the
head [9], feet [13], wrists [12, 16], lower torso [16], and ankles [12]
to cause a character’s motion reconstruction. The latest data-driven
methods work well with a motion database and may find matches
directly from the sensor input [7, 14]. However, they have problems
if the search does not return a hit, as this may lead to a considerable
loss in quality of the synthesized result. Interpolation [21] addresses
this, but cannot create new poses that are unavailable in the database,
and cannot compensate for the delay.

2.2 Gait Reconstruction
Zhong et al. [34] present an overview of various approaches to an-
alyzing the lower extremities, especially the gait, with wearable
sensors. Shi et al. [22] and Ying et al. [32] propose algorithms that
use a foot-mounted accelerometer for automatic foot gesture and
step detection. Jasiewicza et al. [10] recognized gait events using
either foot-mounted linear acceleration sensors or angular velocity
sensors. Yang et al. [31] further improved their real-time gait detec-
tion. Caserman et al. [4] recognize individual (left and right) steps of
the user almost in real time. They use an adaptive, threshold-based
peak detector for the pre-filtered acceleration acc signal (provided
by an Oculus Rift HMD). However, they require an initial calibra-
tion with unknown sensors and suffer from undetected steps. The
error varies by almost 50% between different experiments, due to
estimation errors of the head orientation and the linear acceleration.
These are known problems, since even a single integration of an
inertial signal accumulates high errors over a short period of time.

2.3 Quintessence
Most methods require motion capturing and knowledge bases of
human motions to obtain candidate poses for the results or the
basis of their synthesis. The quality of the synthesized motion and
the running time of the search algorithms depend on the size of
the knowledge base. In contrast, our approach does not require a
database as we recognize gait phases to directly trigger an animator
to reconstruct the synthetic motion of the lower body in VR. To the
best of our knowledge, only Caserman et al. [4] reconstruct the gait
motion with a single accelerometer mounted on the head, but with
insufficient stability and accuracy. Our baseline method is based
on their approach and aims to reconstruct the lower body motion
for mobile low-end VR systems with low latency, low computation
effort, without additional sensors, but with a natural reconstruction
of the gait motion to an avatar representation.

3 METHOD

3.1 General Approach
Fig. 2 shows the processing pipeline of our general approach. We pre-
process raw xyz-accelerations (accxyz) from a single head-mounted

IMU Pre-Processing Model Animatoracc.xyz
raw SMV

window
gait
phase

predicts triggersextracts
Animation

senses 

state

plays

Figure 2: Overview of our processing pipeline.

IMU, before our models recognize gait phases (gp) from sliding
windows that embed the rotation-invariant signal magnitude vector
(SMV) of the accxyz stream. Fig. 1 shows exemplary SMV paccxyzqs
of the head-mounted IMU (blue) and two foot-mounted reference
sensors (red and green) of a user who is standing, walking (cut-
off), and turning. In a training phase, our models learn to map a
known SMV paccxyzq to the corresponding ground truth gp that we
obtained a-priori from reference sensors (that are rigidly mounted
on the ankle as in [23, 28]). In a live phase, our models then predict
the current gp from unknown SMV paccxyzq. A gp then forces our
animator to trigger a corresponding animation playback to control
avatar animation states. The animator therefore controls the speed
adjustment. We exploit the knowledge that a gait cycle (gc) is
divided into eight individual gps that our models reliably recognize:
Initial Contact (IC), Loading Response (LRE), Mid Stance (MST),
Terminal Stance (TST), Pre-Swing (PSW), Initial Swing (ISW), Mid
Swing (MSW), and Terminal Swing (TSW), see Fig. 3.

Gait Phase Classification. To animate the reconstructed motion
in VR, we aim to recognize the gp before the user “lifts” the leg
(MST to TST) and to track the transition from MST to ISW to ensure
that the signal really represents a valid gc of one leg, see the upper
graph in Fig. 3).While the right foot finishes its gc (from samples
0 to 50), the left foot stands still in the LRE phase (0 to 25). The
left foot begins to move from the MST (at 25) to the ICO and LRE
(at 85) (when we raise the leg). The head-mounted acc (blue curve)
clearly represents the MST (at 25) and ISW (at 55) of the left foot
(green) in a pattern that also repeats for the right foot (red curve)
and shows MST (at 80) and ISW (at 105) of the right foot, which
occur with TSW and LRE of the left foot. However, only using acc
values also poses the challenge to reliably separate unrelated head
motions from motions that indicate gps.

LRE MST TST PSW ISW MSW TSW ICO LRE

Figure 3: Gait cycle and its phases (top) and SMV of the head-
mounted acc (blue) and its synchronized reference SMVs of acc from
sensors attached to the left (green) and right (red) foot (bottom).

3.2 Pre-Processing
Windowing. We first capture the accxyz input stream and slice

it into overlapping consecutive windows. We found that a window
size w=50Hz and an overlap of 1Hz yield the highest accuracy, are
robust against turning and rotary movements, cover all gps, and are
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Figure 4: Correlation vectors from the head-mounted accelerometer:
Cg, a general one (blue) to recognize the gp and two Cgside , that
recognize if its either a gp from the left (green) or right (red) foot.

long enough to predict future gps from history and context. Hence,
as the head-mounted accelerometer samples at 100Hz, already 0.5s
of head motion cover enough motion characteristics to accurately
and reliably reconstruct leg motion.

SMV. To reduce the computational effort, we reduce the input
dimension to a single axis as we calculate the:

SMV paccxyzq “
b

acc2x`acc2y`acc2z . (1)

Since the gravitational component of the acc on the body axis is
not affected when standing, walking, and turning, we subtract it
from the SMV and thus, also eliminate the deflections caused by
it. Because head rotations do not affect linear acc on the body axis,
our models can separate them from walking, standing or turning.
Our models therefore reliably estimate gps, as they only process on
rotation-invariant linear acc [33].

3.3 Threshold-based Method (THR)

We implemented THR according to Caserman et al. [4]. THR rec-
ognizes a gp above a certain threshold T in an incoming window
of SMV paccxyzq data. In a training phase, we derive user-specific
threshold values Ts, that yield in the same number of gps as the
reference sensors and that are the smallest to keep the delay low.

From there we derive general thresholds Tg (= 1
n

řn
i“1 Tspiq) that we

use in a live phase with unknown users, when we have no Ts. Each
value vi of the SMV is compared with Tg: If vi ą Tg, we recognize
a gp, else no gp. We derive an additional general threshold Tgpsideq
on accy data to determine its specific foot. If vi ą Tgpsideq, we rec-

ognize a left foot gp, else a right foot. Hence, Tgpsideq indicates a

lateral inclination of a person’s body, which in turn indicates the
upward movement of the opposite leg. By clearance, those general
thresholds may not generalize well to unknown users as human gait
is individual and yield incorrect predictions while rotating.

3.4 Pearson Correlation-based Method (COR)

We compare two vectors x and y to determine their linear correlation
coefficient r as a measure of their dependency, with an unknown
incoming sequence x=SMV paccxyzq and y, a known sequence that
represents the gp (ISW to ISW). COR determines correlation coeffi-
cients from a general vector Cg (mean of all user-specific vectors:
meanpCsq) to detect the gp, see the blue curve in Fig. Fig. 4. A sec-
ond general vectorCgside determines the left or right foot on accy data,
see the green and red curves in Fig. Fig. 4. We use the correlation

function for pairs of pxi,yiq, i=1, ...,N with a linear r [15, 26]:

r “
ř

ipxi´ xqpyi´ yqař
ipxi´ xq2qař

ipyi´ yq , (2)

to describe the the correlation of xpnq and ypnq P tCg,Cgsideu over
time with “cross” state x‰ y [26]. The value of r ranges from ´1
to 1: r=1 is the best match for a rising curve (r approaches 1 if x is
similar to the known y, samples 0 to 25 in Fig. 4); r=0 expresses the
lowest match, i.e., no gp was recognized; and r=´1 is the best match
of a falling curve (r approaches ´1 if x is similar to the known y,
samples 25 to 50 in Fig. 4). We found that r ą |0.9| yields accurate
gps with lowest delay and is robust to rotations.

3.5 Support Vector Machine-based Method (SVM)
In contrast to THR and COR, our cubic SVM detects gp and the
corresponding foot directly from raw data. In a training phase SVM
is trained based on windows of SMV(accxyz) with corresponding
ground truth labels of gps (ISW to ISW) and the respective left or
right foot. In a live phase SVM predicts foot-specific gps and its
confidence level from unknown SMV(accxyz) of overlapping win-
dows. Using a grid search on well-known methods (SVM, Decision
Trees (DT), and Gaussian processes (GP)) and combinations of hand-
crafted statistical and frequency domain features, we selected SVM
as the optimal model w. hyperparameters that result in the highest
accuracy of the gp classification.1

3.6 BLSTM-based Method (BLSTM)
A BLSTM consists of two hidden forward and backward LSTM lay-
ers to capture gp and the corresponding foot directly from raw data.
BLSTM captures and memorizes spatial and temporal dependencies
in SMV(accxyz), as it tracks the emergence of these features in a
sequence from both the past and the future, but at the expense of
computational effort. Our architecture consists of a single BLSTM
layer (to reduce computational effort), followed by a dropout layer
(to prevent overfitting) [25]. A fully connected layer multiplies
the input by a weight matrix and then adds a bias vector. Next, a
Softmax layer applies a Softmax function to the input, and a final
classification layer calculates the cross entropy loss for our multi-
class classification problem. Using a grid search, we derived the
optimal architecture w. hyperparameters, that lead to the highest
accuracy of the gp classification.2

3.7 Motion Synthesis
Each method sends foot-specific gps to the animator. The animator
then updates its internal state to trigger gait animation. We achieve
motion synthesis by adding key points to the animation (captured
and synchronized by our optical reference system, see Sect. 4). The
predicted gps trigger them to control the animation.

State Machine. The animator also uses smooth, linear motion
state transitions (which compensate for faulty classification of gp).
Hence, its state machine is set to a suitable fine-grained motion state
for each foot-specific gp. The more granular a method recognizes

1SVM grid search parameters: SVM Linear: C P[1,10,100,1000];
SVM Poly.: C P[1,10,100,1000], degree=3 P[2:1:6]; SVM RBF: γ
P[0.001,0.0001], C P[1,10,100,1000]; DT: max. depth=97 P[1:1:150], max.

features=27 P[1:1:30], max. leaf nodes=15 P[1:1:20]; GP: kernel P[RBF,

Matern52, rotational quadratic], RQ α P[0.001,0.01,0.1,1.0,2.0:10], RQ

length scale P[0.1,1.0,:,10], RBF length scale P[0.1,1.0,3.0,:,10], M52 length

scale P[0.1,1.0,:,10], M52 ν P[0.1,1.0,1.5,2.0,2.5,:,10];
2BLSTM grid search parameters: solver P[SGD, Adam, rm-

sprop]; β1,β2=0.01; momentum=0.9; initial learning rate (LR)=0.009
P[1.0:0.1:0.00001]; LR drop period P[0,10,50,100] epochs; LR drop rate=0.9;
batch size P[128,256,512,1024,2048]; B/LSTM layers=2; LSTM cells per

layer=128; shuffle P[no,per epoch]; gradient clipping=max(input); d p
P[10,20,50,75]%. (Highest accuracy with bold numbers.)
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Table 1: Recognition accuracy of gp.

Method Misclassification rate [%]

MAE MSE RMSE CEP25 CEP50 CEP75 CEP95

THR 0.512 0.327 0.571 0.311 0.464 0.737 0.951

COR 0.087 0.010 0.098 0.050 0.079 0.119 0.181

SVM 0.056 0.004 0.062 0.039 0.053 0.066 0.086

BLSTM 0.016 0.003 0.058 0.001 0.002 0.005 0.076

Table 2: Recognition delay.

Method Delay [ms]
I Min. Max. SD

THR +60.0 +30.0 110.0 40.0

COR -30.0 -50.0 +40.0 20.0

SVM -70.0 -50.0 +20.0 20.0

BLSTM -140.0 -280.0 0.0 30.0

Table 3: Computational effort.

Method ttrain [h] tlive [s] tlive [Hz]
CPU gpU CPU Mobile CPU Mobile

THR 0.2 - 0.00073 0.0096 1370 104

COR 0.3 - 0.00067 0.0114 493 87

SVM 19.6 - 0.01042 0.1666 96 6

BLSTM 12.4 3.4 0.01786 0.3333 56 3

individual gp, the more granular it triggers the state machine of
our animator and the more “natural” the animation becomes. If an
initial gp is recognized, the animator plays a start animation, Fig. 5
“Start Walk Right” and “Start Walk Left”. We trigger animation
playback at 100Hz (just like the accelerometer sampling rate) based
on the predicted gp. Therefore, the status of the animator always
corresponds to the current and individual speed of a user.

Error Handling. Since we also sample more (100Hz) than we
render (60Hz), we use the intermediate estimates for error and outlier
filtering. This oversampling also helps to filter incorrect predictions
in a pre-processing step. Since the animator updates its states at
100Hz, it smoothes the latest history of gps (5 time steps) to com-
pensate for misrecognized steps, to remove outliers, and not simply
to “interrupt” an ongoing animation cycle. Thus, we only perform
smooth blending between two physically incorrect animations in
cases of at least 3 consecutive incorrectly recognized gps. The an-
imator switches to the second phase of the animation (see Fig. 5
“Finish Walk Right” and “Finish Walk Left”), restores the status
“standing”, and does not animate the entire gait cycle. As the state
machine of the animator guarantees and limits possible successive
sub-animations, we never end up in a “sudden” animation break.

Finish 
Walk
Right

Finish 
Walk
Left

Start 
Walk
Right

Start 
Walk
Left

Idle
Animation

detected
     continue

resetnot detected
     stop

misdetected
     reset

detected
     start

detected
     start

misdetected
     reset

detected
     continue

not detected
     stop

Figure 5: Coarse-grained state machine of our animator.

4 TECHNICAL EVALUATION

4.1 Experimental Setup
Reference Systems. We recorded 6DoF reference positions and

orientations with 28 cameras (that cover a volume of 11.025m3,
45ˆ 35ˆ7m) of the millimeter-accurate optical motion tracking
system (Qualisys) with a spherical error probable (SEP95) ď 5mm
and ď 0.1°). The subjects wore 4 small trackable reflective markers,
attached to an elastic ribbon of the HMD, see Fig. 1, to track
the calibrated 6DoF pose of each HMD with a constant 300Hz.
The reference poses were broadcasted via 5GHz WiFi to render
the pose of the VR camera. We recorded the reference gps with
two Samsung Galaxy S7 phones with accelerometer and gyroscope
sensors (STMicroelectronics LSM6DS3 samples acc at ˘16G and
gyr at˘1000d ps at quasi constant 100Hz) that were rigidly mounted
on each leg (phones in inverse portrait mode), see Fig. 1. With
reflective markers mounted on the phones, we found that these
reference sensors provide the same gait patterns as Qualisys.

Measurement System. We used a Samsung Gear VR HMD in
combination with a Samsung Galaxy S8 phone (Android version 8.0)
that both renders the VR scene at 60Hz and predicts gps at about
100Hz. The phone’s IMU provides accelerations at 100Hz. We ac-
cessed the IMU sensor data of the smartphones via the Android API

(version 6, 2019) [8]. Qualysis and the three phones were connected
to the same global NTP time server to store their recordings together
with global NTP time-synchronized time stamps.

Dataset. To collect the training, validation, and test data, we con-
ducted a user study with 6 participants (4 male, 2 female, age [years]:
with an average of M=26.82, and standard deviation SD=4.31);
height [m]: from 1.52m to 1.96m, M=1.78, SD=0.07), weight [kg]:
M=68.7, SD=9.82). 5 users provide training and validation data.
The randomly selected “left-out” user provides test data that are
unknown to the methods for evaluating their generalizability. Note
that these users have never participated in our subjective user study
in Sect. 5. For 10 iterations, each user started standing at the
same position, next walked about 20m, then turned (some went in a
small circle while others turned in place) and returned to the start-
ing position, similar to Fig. 7. The users were allowed to move
and rotate their body and head freely. In total, we recorded about
37.5min of motion data (=6 subjects ¨ 6.25min, SD=0.5min, 729m
per user). The complete study resulted in a total distance of ap-

proximately 4.37km at similar speeds (M=6.8 km
h ; min. 6.3 km

h ; max.

7.4 km
h ; SD=0.37 km

h ). We collected a clean data pool with 224.950
overlapping acceleration windows (w=50 at 100Hz, and 1 sample
overlap) with corresponding reference poses and gp. From there,
we generated two datasets: (1) a training (70%=131.220 windows)
and a validation dataset (30%=56.237 windows) from 5 users; and
(2) a test dataset (37.491 windows) from the remaining “left-out” to
evaluate the generalizability of the methods.

4.2 Results

Accuracy Benchmark. Table 1 describes the accuracy (mis-
classifications in [%]) of each method to predict the correct gp for
each overlapping window by the mean absolute error (MAE), mean
square error (MSE, interprets small outliers), root mean square error
(RMSE, interprets large outliers), and circular error probable (CEP,
probability of a radial error of our approach) from 25% to 95%.

The results show that BLSTM yields the lowest absolute error
(MAE=0.016%), performs best (only 1.6% of all gps are misclas-
sified), and therefore predicts a correct gp in 98.4 of all cases,
while THR (worst) predicts only correct in 49 out of 100 cases.
We found THR performs worst, while Tg returns fewer errors for
MAE “ 0.31% (69 out of 100 gps are correct), Tgs adds a larger
error that leads to an overall error of MAE “ 51%. In contrast,
COR performs significantly better than THR and is similar to SVM
(MAE “ 8.7% vs. MAE “ 5.6%). We think that COR, SVM, and
BLSTM perform better than THR as they exploit the history of
the samples, i.e., the emergence of gps between consecutive ISW s.
BLSTM offers the best performance as its BLSTM structure learns
from both the past and the future.

We see a similar trend in the outliers (MSE and RMSE) as in
the absolute errors (MAE and CEP). THR shows a high number of
small outliers (MSE “ 0.327) that may be due to misclassification
while the “left-out” is standing and looking around. Instead, the
large outliers of THR (RMSE “ 0.57) may be due to misclassifica-
tion when a user turns while walking. The other three data-driven
methods show a much smaller number of (small and large) outliers
than THR, as they do not misclassify standing, walking, turning. In
fact, COR shows slightly more outliers than SVM and BLSTM, as
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Figure 6: Left: Study procedure. Center: Scenario settings; physical world, virtual representation. Right: Female and male humanoid avatars.

Figure 7: Avatar visualizations. Left to right: No avatar, block avatar, and two walking humanoid avatars (female, male).

it may struggle to detect the correct foot-specific gp.
Computational Effort and Delay For the “left-out” dataset Ta-

ble 3 lists training times ttrain, for all windows , and tlive, the average
time it takes to inference the gp on a single window. For tlive the
Mobile (phone) times are significantly slower than the CPU times,
as the phone cannot use its full computing power while it renders
the VR scene. THR and COR predict a new gp in less than 11ms,
whereas the SVM and the BLSTM are computationally too costly.

We determine the delay for each method as the time difference (in
ms) between the time of the reference gp and its time of detection.
The delay is 0 if a method directly detects a gp when it happens. A
delay is ă0 if a method predicts a gp before it happens. The delay
is ą0 if a method predicts a gp after that. Table 2 shows that THR
had the highest delay (+60ms on average). COR showed an average
delay of -30ms. Instead, SVM and BLSTM showed an average
negative delay (SVM: -70ms; BLSTM: -140ms).

Quintessence. Both the delay and the computational effort may
add up and affect the visualization of the motion reconstruction.
THR shows the highest delay (+60ms) with the lowest computing
costs (10ms) but yields lowest accuracy. Even though SVM and
BLSTM yield the highest accuracy at lowest delay (-70ms and -
140ms), that may compensate for their high computing costs (167ms
and 333ms), for Mobile the frame rate of the VR scene drops below
15 f ps on average while processing them. Since COR showed the
best compromise between accuracy, low delay (-30ms), and low
computing effort (11.5ms) it is applicable for our real user study.

5 EXPLORATORY USER STUDY

5.1 Design

We determined the impact of our pipeline’s gait movement repre-
sentation on the perception of simulator sickness [17] in a mobile
VR simulation. We conducted a one-factor (avatar representation)
within-subjects study that consists of a comparison of 3 VR scenes
with different avatar representations (see Fig. 6, right) to a physical
baseline. The subjects performed walking trials with each repre-
sentation, namely i) no avatar representation, ii) a simplified block
avatar representation without animation, and iii) a humanoid avatar
representation that is animated using our motion reconstruction ap-
proach w. COR, see Fig. 7. The gait animation consists of a regular
gait cycle with moderate arm swings.

5.2 Participants

21 participants (14 male, 7 female; age [years]: from 21 to 57,
M=28.76, SD “ 9.60; height [m]: from 1.55 to 1.88, M “ 1.75,
SD “ 0.09; weight [kg]: M “ 73.90, SD “ 16.57) were recruited
using mailing list invitations (no disturbances with equilibrium;
2 suffer from acrophobia; 4 easily get car sickness; 2 reported
dyschromatopsia; all had normal or corrected visual acuity, verified

by a Landolt-C test; 15 had previous VR experiences and 14 with
HMD; 8 play video games daily, 8 moderately, and 5 never).

5.3 Measures
To investigate the effect of the models on the simulator sickness,
we assessed the Simulator Sickness Questionnaire (SSQ) [17] after
each trial and compared it with a baseline assessment.

5.4 Procedure
Fig. 6 (left) depicts the study procedure: We informed the subjects
about it and assessed demographic questions and pre-exposure sim-
ulator sickness measures [17]. Then, we introduced them to the
tasks, calibrated the setup, and captured baseline measures when the
subjects walked back and forth (from “Start” over “Turn” to “End”)
a 16m distance in the physical world, see Fig. 6. Next, we gave them
time to acclimatize, before the Landolt vision test [6] was presented
in VR. After another calibration and acclimatization, the subjects
walked again back and forth a 16m distance in VR. The VE was
designed, similar to a virtual pit scenario, with a nature scene and
a crossable bridge, see Fig. 6. Users were free to walk from “Start”
over “Turn” to “End” on a path of their choice (some walked faster
than others, some turned in circles or on spot). We did not define
or display a line, except that they had to cross the bridge with the
possibility to turn their heads freely under all circumstances. We
only instructed them to focus on their feet to ensure exposure to their
virtual representations each time they cross the bridge. In a random
order (to avoid biasing the sequencing), we evaluated 3 different
avatar conditions in 3 trials: (1) No Avatar; (2) Block Avatar; and
(3+4) Ours, the gender-specific humanoid avatar with our motion
reconstruction, see Fig. 6. Fig. 7 shows the conditions from the point
of view of the user while looking down while walking. After each
trial, we assessed the SSQ and the subjects had time to rest before
starting the next condition. The entire study lasted about 30min.

Baseline No Avatar Block Avatar Ours Disorientation Nausea Oculomotor

Total Sickness Score Baseline
No Avatar
Block Avatar
Ours

5

Figure 8: SSQ results: Total sickness- (left) and subscores (right).
Our approach reduces the perception of disorientation significantly.

5.5 Results
Simulator Sickness. We calculated the repeated measurement

analysis of variance (ANOVA) for the SSQ total score (TSS) and
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the subscores. Fig. 8 shows descriptive results for the values for dis-
orientation, oculomotor, and nausea. There was no major effect for
the TSS. Overall, the baseline measure scored the lowest, followed
by Ours. Instead, the analysis of the subscores showed a signifi-
cant main effect on disorientation; Fp3,40.38q “ 5.298, p“ .009,
η2

p “ 0.209. Pairwise comparisons showed that the No Avatar condi-
tion results in a significantly higher degree of disorientation than the
Baseline condition (p“ .025), while Ours is closest to the Baseline.

6 CONCLUSION

In this paper we compare 4 different methods on their performance
to reconstruct gait motion, as well as their reproduction to avatar
motion in a mobile low-end VR application. While our BLSTM-
based approach always predicts the correct gait phase at lowest delay
but drastically drops the refresh rate of the virtual scene, our Pear-
son correlation-based approach is an optimal compromise in delay,
computational effort, and accuracy that also reduces disorientation
effects based on its avatar-based motion reproduction, in particularly
to improve mobile low-end VR applications.
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