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Abstract

Visual Odometry (VO) accumulates a positional drift in
long-term robot navigation tasks. Although Convolutional
Neural Networks (CNNs) improve VO in various aspects,
VO still suffers from moving obstacles, discontinuous ob-
servation of features, and poor textures or visual informa-
tion. While recent approaches estimate a 6DoF pose ei-
ther directly from (a series of) images or by merging depth
maps with optical flow (OF), research that combines abso-
lute pose regression with OF is limited.

We propose ViPR, a novel modular architecture for long-
term 6DoF VO that leverages temporal information and
synergies between absolute pose estimates (from PoseNet-
like modules) and relative pose estimates (from FlowNet-
based modules) by combining both through recurrent lay-
ers. Experiments on known datasets and on our own Indus-
try dataset show that our modular design outperforms state
of the art in long-term navigation tasks.

1. Introduction

Real-time tracking of mobile objects (e.g., forklifts in in-
dustrial areas) allows to monitor and optimize workflows
and tracks goods for automated inventory management.
Such environments typically include large warehouses or
factory buildings, and localization solutions often use a
combination of radio-, LiDAR- or radar-based systems, etc.

However, these solutions often require infrastructure or
they are costly in their operation. An alternative approach
is a (mobile) optical pose estimation based on ego-motion.
Such approaches are usually based on SLAM (Simultane-
ous Localization and Mapping), meet the requirements of
exact real-time localization, and are also cost-efficient.

Available pose estimation approaches are categorized
into three groups: classical, hybrid, and deep learning (DL)-

based methods. Classical methods often require an infras-
tructure that includes either synthetic (i.e., installed in the
environment) or natural (e.g., walls and edges) markers.
The accuracy of the pose estimation depends to a large ex-
tent on suitable invariance properties of the available fea-
tures such that they can be reliably recognized. However,
to reliably detect features, we have to invest a lot of ex-
pensive computing time [38, 27]. Additional sensors (e.g.,
inertial sensors, depth cameras, etc.) or additional con-
text (e.g., 3D models of the environment, prerecorded land-
mark databases, etc.) may increase the accuracy but also
increase system complexity and costs [44]. Hybrid meth-
ods [66, 7, 6, 23, 74] combine geometric and machine learn-
ing (ML) approaches. For instance, ML predicts the 3D
position of each pixel in world coordinates, from which
geometry-based methods infer the camera pose [16].

Recent DL approaches partly address the above men-
tioned issues of complexity and cost, and also aim for high
positioning accuracy, e.g., regression forests [51, 74] learn a
mapping of images to positions based on 3D models of the
environment. Absolute pose regression (APR) uses DL [63]
as a cascade of convolution operators to learn poses only
from 2D images. The pioneer PoseNet [33] has been ex-
tended by Bayesian approaches [31], long short-term mem-
ories (LSTMs) [77] and others [50, 26, 36, 11]. Recent APR
methods such as VLocNet [72, 59] and DGRNets [42] in-
troduce relative pose regression (RPR) to address the APR-
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Figure 1: Our pose estimation pipeline solves the APR- and RPR-
tasks in parallel, and recurrent layers estimate the final 6DoF pose.
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task. While APR needs to be trained for a particular scene,
RPR may be trained for multiple scenes [63]. However,
RPR alone does not solve the navigation task.

For applications such as indoor positioning, existing ap-
proaches are not yet mature, i.e., in terms of robustness and
accuracy to handle real-world challenges such as changing
environment geometries, lighting conditions, and camera
(motion) artifacts. This paper proposes a modular fusion
technique for 6DoF pose estimation based on a PoseNet-
like module and predictions of a relative module for VO.
Our novel relative module uses the flow of image pixels be-
tween successive images computed by FlowNet2.0 [25]
to capture time dependencies in the camera movement in
the recurrent layers, see Fig. 1. Our model reduces the posi-
tioning error using this multitasking approach, which learns
both the absolute poses based on monocular (2D) imaging
and the relative motion for the task of estimating VO.

We evaluate our approach first on the small-scale
7-Scenes [66] dataset. As other datasets are unsuitable
to evaluate continuous navigation tasks we also release a
dataset that can be used to evaluate various problems aris-
ing from real industrial scenarios such as inconsistent light-
ing, occlusion, dynamic environments, etc. We benchmark
our approach on both datasets against existing approaches
[33, 77] and show that we consistently outperform the ac-
curacy of their pose estimates.

The rest of the paper is structured as follows. Section 2
discusses related work. Section 3 provides details about our
architecture. We discuss available datasets and introduce
our novel Industry dataset in Section 4. We present experi-
mental results in Section 5 before Section 6 concludes.

2. Related Work
SLAM-driven 3D point registration methods enable pre-

cise self-localization even in unknown environments. Al-
though VO has made remarkable progress over the last
decade, it still suffers greatly from scaling errors of real
and estimated maps [43, 69, 49, 29, 34, 35, 40, 54, 4, 39].
With more computing power, Visual Inertial SLAM com-
bines VO with Inertial Measurement Unit (IMU) sensors to
partly resolve the scale ambiguity, to provide motion cues
without visual features [43, 70, 29], to process more fea-
tures, and to make tracking more robust [69, 34]. Mul-
tiple works combine global localization in a scene with
SLAM/(Inertial) VO [46, 17, 55, 64, 22, 52, 28]. However,
recent SLAM methods do not yet meet industry-strength
with respect to accuracy and reliability [57, 18] as they need
undamaged, clean and undisguised markers [39, 30] and as
they still suffer from long-term stability and the effects of
movement, sudden acceleration and occlusion [75]. SIFT-
like point-based features [45] for the localization from land-
marks [3, 24, 41, 78] require efficient retrieval methods, use
VLAD encodings such as DenseVLAD [71], use anchor

points such as AnchorNet [60], or use RANSAC-based
optimization such as DSAC [6] and ActiveSearch [61].

VO primarily addresses the problem of separating ego-
from feature-motion and suffers from area constraints,
poorly textured environments, scale drift, a lack of an initial
position, and thus inconsistent camera trajectories [10]. In-
stead, PoseNet-like architectures (see Sec. 2.1) that esti-
mate absolute poses on single-shot images are more robust,
less compute-intensive, and can be trained in advance on ap-
plication data. Unlike VO, they do not suffer from a lack of
initial poses and do not require access to camera parameters,
good initialization, and handcrafted features [65]. Although
the joint estimation of relative poses may contribute to in-
creasing accuracy (see Sec. 2.2), such hybrid approaches
still suffer from dynamic environments, as they are often
trained offline in quasi-rigid environments. While optical
flow (see Sec. 2.3) addresses these challenges it has not yet
been combined with APR for 6DoF self-localization.

2.1. Absolute Pose Regression (APR)

Methods that derive a 6DoF pose directly from images
have been studied for decades. Therefore, there are cur-
rently many classic methods whose complex components
are replaced by machine learning (ML) or DL. For in-
stance, RelocNet [2] learns metrics continuously from
global image features through a camera frustum overlap
loss. CamNet [15] is a coarse (image-based)-to-fine (pose-
based) retrieval-based model that includes relative pose re-
gression to get close to the best database entry that contains
extracted features of images. NNet [37] queries a database
for similar images to predict the relative pose between im-
ages and a RANSAC [67] solves the triangulation to pro-
vide a position. While those classic approaches have al-
ready been extended with DL-components their pipelines
are expensive as they embed feature matching and projec-
tion and/or manage a database. Most recent (and simple)
DL-based also outperform their accuracies.

The key idea of PoseNet [33] and its variants [32,
31, 20, 77, 76, 79, 58, 65, 56, 66] among others such as
BranchNet [56] and Hourglass [66] is to use a CNN
for camera (re-)localization. PoseNet works with scene
elements of different scales and is partially insensitive to
light changes, occlusions and motion blur. However, while
Dense PoseNet [33] crops subimages, PoseNet2 [32]
jointly learns network and loss function parameters, [31]
links a Bernoulli function and applies variational infer-
ence [20] to improve the positioning accuracy. However,
those variants work with single images, and hence, do not
use the temporal context (which is available in continuous
navigation tasks), that could help to increase accuracy.

In addition to PoseNet+LSTM [77], there are also
similar approaches that exploit time-context that is inher-
ently given by consecutive images (i.e., DeepVO [79],



Figure 2: Optical flow (OF): input image (left); OF-vectors as
RPR-input (middle); color-coded visualization of OF [1] (right).

ContextualNet [58], and VidLoc [12]). Here, the key-
idea is to identify temporal connections in-between the fea-
ture vectors (extracted from images) with LSTM-units and
to only track feature correlations that contribute the most to
the pose estimation. However, there are hardly any long-
term dependencies between successive images, and there-
fore LSTMs give worse or equal accuracy to, for example,
simple averaging over successively estimated poses [65].
Instead, we combine estimated poses from time-distributed
CNNs with estimates of the OF to maintain the required
temporal context in the features of image series.

2.2. APR/RPR-Hybrids

In addition to approaches that derive a 6DoF pose di-
rectly from an image there are hybrid methods that combine
them with VO to increase the accuracy. VLocNet [72] is
closely related to our approach as it estimates a global pose
and combines it with VO (but it does not use OF). To further
improve the (re-)localization accuracy VLocNet++ [59]
uses features from a semantic segmentation. However, we
use different networks and do not need to share weights be-
tween VO and the global pose estimation. DGRNets [42]
estimates both the absolute and relative poses, concatenates
them, and uses recurrent CNNs to extract temporal rela-
tions between consecutive images. This is similar to our ap-
proach but we estimate the relative motion with OF, which
allows us to train in advance on large datasets, making the
model more robust. MapNet [8] learns a map representa-
tion from input data, combines it with GPS, inertial data,
and unlabeled images, and uses pose graph optimization
(PGO) to combine absolute and relative pose predictions.
However, compared to all other methods the most accurate
extension of it, MapNet+PGO, does not work on purely vi-
sual information, but exploits additional sensors.

2.3. Optical Flow

Typically, VO uses OF to extract features from image
sequences. Motion fields, see Fig. 2 (middle), are used to
estimate trajectories of pixels in a series of images. For
instance, Flowdometry [53] and LS-VO [13] estimate
displacements and rotations from OF. [48] proposed a VO-
based dead reckoning system that uses OF to match fea-
tures. [80] combined two CNNs to estimate the VO-motion:
FlowNet2-ss [25] estimates the OF and PCNN [14]

links two images to process global and local pose informa-
tion. However, to the best of our knowledge, we are the
first to propose an OF-based architecture that estimates the
relative camera movement through RNNs, using OF [25].

3. Proposed Model
After a data preprocessing that crops subimages of size

224 ˆ 224 ˆ 3 from a sequence of four images, our pose
regression pipeline consists of three parts (see Fig. 3): an
APR-network, a RPR-network, and a 6DoF pose estimation
(PE) network. PE uses the outputs of the APR- and RPR-
networks to provide the final 6DoF pose.

3.1. Absolute Pose Regression (APR) Network

Our APR-network predicts the 6DoF camera pose from
three input images based on the original PoseNet [33]
model (i.e., essentially a modified GoogLeNet [68] with a
regression head instead of a softmax) to train and predict
the absolute positions p P R3 in the Euclidean space and
the absolute orientations q P R4 as quaternions. From a
single monocular image I the model predicts the pose

x̃ “ rp̃, q̃s, (1)

as approximations to the actual p and q. As the origi-
nal model learns the image context, based on shape and ap-
pearance of the environment, but does not exploit the time
context and relation between consecutive images [32], we
adapted the model to a time-distributed variant. Hence, in-
stead of a single image the new model receives three (con-
secutive) input images (at timesteps tn´1, tn, and tn`1), see
top part of Fig. 3, uses three separate dense layers (one for
each pose) with 2,048 neurons each, and each of the dense
layers yields a pose. The middle pose yields the most accu-
rate position for the image at time step tn.

3.2. Relative Pose Regression (RPR) Network

Our RPR-network uses FlowNet2.0 [25] on each con-
secutive pairs of the four input images to compute an ap-
proximation of the OF (see Fig. 2) and to predict three rela-
tive poses for later use. As displacements of similar length
but from different camera viewing directions result in dif-
ferent OFs, the displacement and rotation of the camera
between pairwise images must be relative to the camera’s
viewing direction of the first image. Therefore, we trans-
form each camera’s global coordinate systems pxn, yn, znq
to the same local coordinate system px̃n, ỹn, z̃nq by

¨

˝

x̃n
ỹn
z̃n

˛

‚“ R

¨

˝

xn
yn
zn

˛

‚, (2)

with the rotation matrix R. The displacement
∆x̃n,∆ỹn,∆z̃n is the difference between the transformed
coordinate systems. The displacement in global coordinates
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Figure 3: Pipeline of the ViPR-architecture. Data preprocessing (grey): Four consecutive input images (tn´1, . . . , tn`2) are center
cropped. For the absolute network the mean is subtracted. For the relative network the OF is precomputed by FlowNet2.0 [25]. The
absolute poses are predicted by our time-distributed APR-network (yellow). The RPR-network (purple) predicts the transformed relative
displacements and rotations on reshaped mean vectors of the OF with (stacked) LSTM-RNNs. The PE modules (green) concatenates the
absolute and relative modules and predicts the absolute 6DoF poses with stacked LSTM-RNNs.

is obtained by a back-transformation of the predicted dis-
placement, such that

RT
“ R´1 and RT R “ RRT

“ I. (3)

Fig. 4 shows the structure of the RPR-network. Similar
to the APR-network, the RPR-network also uses a stack of
images, i.e., three OF-fields from the four input images of
the timesteps tn´1, . . . , tn`2, to include more time context.

In a preliminary study, we found that our recurrent units
struggle to remember temporal features when the direct in-
put of the OF is too large (raw size 224ˆ224ˆ3 px). This is
in line with findings from Walch et al. [77]. Hence, we split
the OF in zones and compute the mean value for each the
u- and v-direction. We reshape 16ˆ 16 number of zones in
both directions to the size 2ˆ 256. The final concatenation
results in a smaller total size of 3ˆ 512. The LSTM-output
is forwarded to 2 FC-layers that regress both the displace-
ment (size 3ˆ 3) and rotation (size 3ˆ 4).
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Figure 4: Pipeline of the relative pose regression (RPR) architec-
ture: Data preprocessing, OF- and mean computation, reshaping,
and concatenation, 3 recurrent LSTM units, and 2 FC-layers that
yield the relative pose.

The 2 FC-layers use the following loss function to pre-
dict the relative transposed poses ∆p̃tr and ∆q:

L “ α2

∥∥∆p̃tr ´∆ptr
∥∥
2
` β2

∥∥∥∥∆q̃´
∆q

‖∆q‖2

∥∥∥∥
2

. (4)

The first term accounts for the predicted and transformed
displacement ∆p̃tr to the ground truth displacement ∆ptr

with an L2-norm. The second term quantifies the error of
the predicted rotation to the normalized ground truth rota-
tion using an L2-norm. Both terms are weighted by the hy-
perparameters α2 and β2. A preliminary grid search with a
fixed α2 “ 1 revealed an optimal value for β2 that depends
on the scaling of the environment.

3.3. 6DoF Pose Estimation (PE) Network

Our PE-network predicts absolute 6DoF poses from the
outputs of both the APR- and RPR-networks, see Fig. 5.
The PE-network takes as input the absolute position pi “

pxi, yi, ziq, the absolute orientation qi “ pwi, pi, qi, riq, the
relative displacement ∆pi “ p∆xi,∆yi,∆ziq, and the ro-
tation change ∆qi “ p∆wi,∆pi,∆qi,∆riq. As we feed
poses from three sequential timesteps tn´1, tn, and tn`1

as input to the model it is implicitly time-distributed. The
2 stacked LSTM-layers and the 2 FC-layers return a 3DoF
absolute position p P R3 and a 3DoF orientation q P R4

using the following loss:

LpP,∆P q “ α3 ‖p̃´ p‖2 ` β3
∥∥∥∥q̃´

q
‖q‖2

∥∥∥∥
2

. (5)
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Again, in a preliminary grid search we chose L2-norms
with a fixed β3 “ 1 that revealed an optimal value for α3.

4. Evaluation Datasets

To train our network we need two different types of im-
age data: (1) images annotated with their absolute poses
for the APR-network, and (2) images of OF, annotated with
their relative poses for the RPR-network.

Datasets to evaluate APR. Publicly available
datasets for absolute pose regression (Cambridge
Landmarks [33] and TUM-LSI [77]) either lack accurate
ground truth labels or the proximity between consecu-
tive images is too large to embed meaningful temporal
context. The Aalto University [37], Oxford
RobotCar [47], DeepLoc [59] and CMU Seasons [62]
datasets solve the small-scale issue of the 7-Scenes [66]
dataset, but are barely used for evaluation of state-of-the-art
techniques or consider only automotive-driving scenarios.
The 12-Scenes [73] dataset is only used by DSAC++ [5].
For our industrial application these datasets are insufficient.
7-Scenes [66] only embeds scenes with less training
data and only enables small scene-wise evaluations,
but is mainly used for evaluation. Hence, to compare
ViPR with recent techniques we use the 7-Scenes [66]
dataset. Furthermore, we recorded the Industry dataset
(see Sec. 4.1) that embeds three different industrial-like
scenarios to allow a comprehensive and detailed evaluation
with different movement patterns (such as slow motion and
fast rotation).

Datasets to evaluate RPR. To evaluate the perfor-
mance of the RPR and its contribution to ViPR, we
also need a dataset with a close proximity between con-
secutive images. This is key to calculate the relative
movement with OF. However, most publicly available
datasets (Middlebury [1], MPI Sintel [9], KITTI
Vision [21], and FlyingChairs [19]) either do not
meet this requirement or the OF pixel velocities do not
match those of real-world applications. Hence, we directly
calculate the OF from images with FlowNet2.0 [25] to
train the RPR on it. Our novel Industry dataset allows this,
while retaining a large, diverse environment with hard real-
world conditions, as described in the following.

4.1. Industry Dataset

We designed the Industry dataset to suite the require-
ments of both the APR- and the RPR-network and published
the data1 at large-scale (1, 320m2) using a high-precision
(ă 1mm) laser-based reference system. Each scenario
presents different challenges (such as dynamic ego-motion
with motion blur), various environmental characteristics
(such as different geometric scales, light changes, i.e., ar-
tificial and natural light), and ambiguously structured ele-
ments, see Fig. 6.

Industry Scenario #1 [44] has been recorded with 8
cameras (approx. 60˝ field-of-view (FoV) each) mounted
on a stable apparatus to cover 360˝ (with overlaps) that
has been moved automatically at a constant velocity of ap-
prox. 0.3m{s. The height of the cameras is at 1.7 m.
The scenario contains 521,256 images (640 ˆ 480 px) and
densely covers an area of 1,320 m2. The environment im-
itates a typical warehouse scenario under realistic condi-
tions. Besides well-structured elements such as high-level
racks with goods, there are also very ambiguous and ho-
mogeneously textured elements (e.g., blank white or dark
black walls). Both natural and artificial light illuminates
volatile structures such as mobile work benches. While the
training dataset is composed of a horizontal and vertical zig-
zag movement of the apparatus the test datasets movements
vary to cover different properties for a detailed evaluation,
e.g., different environmental scalings (i.e., scale transition,
cross, large scale, and small scale), network generalization
(i.e., generalize open, generalize racks, and cross), fast ro-
tations (i.e., motion artifacts was recorded on a forklift at
2.26 m height) and volatile objects (i.e., volatility).

Industry Scenario #2 uses three 170˝ cameras (with
overlaps) on the same apparatus at the same height. The
recorded 11,859 training images (1, 280ˆ720 px) represent
a horizontal zig-zag movement (see Fig. 7a) and 3,096 test
images represent a diagonal movement (see Fig. 7b). Com-
pared to Scenario #1 this scenario has more variation in its
velocities (between 0m{s and 0.3m{s, SD 0.05m{s).

Industry Scenario #3 uses four 170˝ cameras (with
overlaps) on a forklift truck at a height of 2.26m. Both
the training and test datasets represents camera movements
at varying, faster, and dynamic speeds (between 0m{s and
1.5m{s, SD 0.51m{s). This makes the scenario the most
challenging one. The training trajectory (see Fig. 7c) con-
sists of 4,166 images and the test trajectory (see Fig. 7d)
consists of 1,687 images. In contrast to the Scenarios #1 and
#2 we train and test a typical industry scenario on dynamic
movements of a forklift truck. However, one of cameras’
images were corrupted in the test dataset, and thus, not used
in the evaluation.

1Industry dataset available at: https://www.iis.fraunhofer.de/warehouse.
Provided are raw images and corresponding labels: p and q.

https://www.iis.fraunhofer.de/de/ff/lv/lok/tech/opt1/warehouse.html


(a) Scenario #1 example images. (b) Scenario #2 example images. (c) Scenario #3 setup and example image.

Figure 6: Industry datasets. Setup of the measurement environment (i.e., forklift truck, warehouse racks and black walls) and example
images with normal (a) and wide-angle (b+c) cameras.

5. Experimental Results
To compare ViPR with state-of-the-art results, we first

briefly describe our parameterization of PoseNet [33] and
PoseNet+LSTM [77] in Sec. 5.1. Next, Sec. 5.2 presents
our results. We highlight the performance of ViPR’s sub-
networks (APR, APR+LSTM) individually, and investigate
both the impact of RPR and PE on the final pose estima-
tion accuracy of ViPR. Sec. 5.3 shows results of the RPR-
network. Finally, we discuss general findings and show run-
times of our models in Sec. 5.4.

For all experiments we used an AMD Ryzen 7 2700 CPU
3.2 GHz equipped with one NVidia GeForce RTX 2070 with
8 GB GDDR6 VRAM. Tab. 1 shows the median error of
the position in m and the orientation in degrees. The sec-
ond column reports the spatial extends of the datasets. The
last column reports the improvement in position accuracy
of ViPR (in %) over APR-only.

5.1. Baselines

As a baseline we report the initially described results on
7-Scenes of PoseNet [33] and PoseNet+LSTM [77]
(in italic). We further re-implemented the initial variant of
PoseNet and trained it from scratch with α1 “ 1, β1 “ 30
(thus optimizing for positional accuracy at the expense of
orientation accuracy). Tab. 1 (cols. 3 and 4) shows our
implementation’s results next to the initially reported ones
(on 7-Scenes). We see that (as expected) the results of
the PoseNet implementations differ due to changed values
for α1 and β1 in our implementation.

5.2. Evaluation of the ViPR-Network

In the following, we evaluate our method in multiple sce-
narios with different distinct challenges for the pose estima-
tion task. 7-Scenes focuses on difficult motion blur con-
ditions of typical human motion. We then use the Indus-
try Scenario #1 to investigate various challenges at a larger
scale, but with mostly constant velocities. Industry Scenar-

(a) Training. (b) Testing. (c) Training. (d) Testing.
Figure 7: Exemplary trajectories of Industry Scenarios #2 (a-b)
and #3 (c-d) to assess the generalizability of ViPR.

ios #2 and #3 then focus on dynamic, fast ego-motion of a
moving forklift truck at large-scale.

7-Scenes [66]. For both architectures (PoseNet and
ViPR), we optimized β to weight the impact of position and
orientation such that it yields the smallest total median error.
Both APR+LSTM and ViPR return a slightly lower pose es-
timation error of 0.33m and 0.32m than PoseNet+LSTM
with 0.34m. ViPR yields an average improvement of the
position accuracy of 3.18 % even in strong motion blur sit-
uations. The results indicate that ViPR relies on a plau-
sible optical flow component to achieve performance that
is superior to the baseline. In situations of negligible mo-
tion between frames the median only improves by 0.02m.
However, the average accuracy gain still shows that ViPR
performs en par or better than the baselines.

Stable motion evaluation. For the Industry Scenario #1
dataset, we train the models on the zig-zag trajectories, and
test them on specific sub-trajectories with individual chal-
lenges, but at almost constant velocity. In total, ViPR im-
proves the position accuracy by 12.27% on average (min.:
4.03 %; max.: 25.31 %) while the orientation error is simi-
lar for most of the architectures and test sets.

In environments with volatile features, i.e., objects that
are only present in the test dataset, we found that ViPR (with
optical flow) is significantly (6.41 %) better compared to
APR-only. However, the high angular error of 77.54˝ in-
dicates an irrecoverable degeneration of the APR-part. In
tests with different scaling of the environment, we think that
ViPR learns an interpretation of relative and absolute posi-
tion regression, that works both in small and large proxim-
ity to environmental features, as ViPR improves by 15.52 %
(scale trans.) and 14.41 % (small scale) or 10.68 % (large
scale). When the test trajectories are located within areas
that embed only few or no training samples (gener. racks
and open), ViPR still improves over other methods with
4.03-11.75 %. The highly dynamic test on a forklift truck
(motion artifacts) is exceptional here as only the test dataset
contains dynamics and blur, and hence, challenges ViPR
most. However, ViPR still improves by 10.01 % over APR-
only, despite the data dynamic’s absolute novelty.

In summary, ViPR decreases the position median signif-
icantly by about 2.53m than only APR+LSTM (4.89m).
This and the other findings are strong indicators that the rel-
ative component RPR significantly supports the final pose
estimation of ViPR.



Table 1: Pose estimation results (position and orientation median error in meters m and degrees (˝)) and total improvement of PE in % on
the 7-Scenes [66] and Industry datasets. The best results are bold and underlined ones are additionally referenced in the text.

Dataset Spatial PoseNet [33] PoseNet+ APR-only APR+LSTM ViPR* Improv.
extend (m) (original/our param.) LSTM [77] (our param.) ViPR (%)

chess 3.0ˆ2.0ˆ1.0 0.32 / 0.24 4.06 / 7.79 0.24 5.77 0.23 7.96 0.27 9.66 0.22 7.89 + 1.74

7
-
S
c
e
n
e
s

[6
6]

fire 2.5ˆ1.0ˆ1.0 0.47 / 0.39 14.4 / 12.40 0.34 11.9 0.39 12.85 0.50 15.70 0.38 12.74 + 2.56
heads 2.0ˆ0.5ˆ1.0 0.29 / 0.21 6.00 / 16.46 0.21 13.7 0.22 16.48 0.23 16.91 0.21 16.41 + 3.64
office 2.5ˆ2.0ˆ1.5 0.48 / 0.33 3.84 / 10.08 0.30 8.08 0.36 10.11 0.37 10.83 0.35 9.59 + 4.01
pumpkin 2.5ˆ1.0ˆ1.0 0.47 / 0.45 8.42 / 8.70 0.33 7.00 0.39 8.57 0.86 49.46 0.37 8.45 + 5.12
red kitchen 4.0ˆ3.0ˆ1.5 0.59 / 0.41 8.64 / 9.08 0.37 8.83 0.42 9.33 1.06 50.67 0.40 9.32 + 4.76
stairs 2.5ˆ2.0ˆ1.5 0.47 / 0.36 6.93 / 13.69 0.40 13.7 0.31 12.49 0.42 13.50 0.31 12.65 + 0.46
I total 0.44 / 0.34 7.47 / 11.17 0.31 9.85 0.33 11.11 0.53 23.82 0.32 11.01 + 3.18

In
du

st
ry

Sc
en

ar
io

1
[4

4]

cross 24.5ˆ16.0 – / 1.15 – / 0.75 – 0.61 0.53 4.42 0.21 0.46 0.60 + 25.31
gener. open 20.0ˆ17.0 – / 1.94 – / 11.73 – 1.68 11.07 3.36 2.95 1.48 10.86 + 11.75
gener. racks 8.5ˆ18.5 – / 3.48 – / 6.01 – 2.48 1.53 3.90 0.61 2.38 1.95 + 4.03
large scale 19.0ˆ19.0 – / 2.32 – / 6.37 – 2.37 9.82 4.99 1.61 2.12 8.64 + 10.68
motion art. 37.0ˆ17.0 – / 7.43 – / 124.94 – 7.48 131.30 8.18 139.37 6.73 136.6 + 10.01
scale trans. 28.0ˆ19.5 – / 2.17 – / 3.03 – 1.94 6.46 5.63 0.58 1.64 6.29 + 15.52
small scale 10.0ˆ11.0 – / 3.78 – / 9.18 – 4.09 20.75 4.46 6.06 3.50 15.74 + 14.41
volatility 29.0ˆ13.0 – / 2.68 – / 78.52 – 2.09 77.68 4.16 78.73 1.96 77.54 + 6.41
I total – / 3.12 – / 30.07 – 2.82 32.30 4.89 28.76 2.53 32.28 + 12.27

In
du

st
ry

Sc
en

.2

cam #0 6.5ˆ9.0 – / 0.49 – / 0.21 – 0.22 0.29 1.49 0.14 0.16 3.37 + 26.24
cam #1 6.5ˆ9.0 – / 0.15 – / 0.38 – 0.23 0.35 2.68 0.17 0.12 2.75 + 46.49
cam #2 6.5ˆ9.0 – / 0.43 – / 0.19 – 0.37 0.13 0.90 0.15 0.30 1.84 + 17.87
I total – / 0.36 – / 0.26 – 0.27 0.26 1.69 0.15 0.20 2.65 + 30.20

In
du

st
ry

Sc
en

.3

cam #0 6.0ˆ11.0 – / 0.41 – / 1.00 – 0.34 1.26 0.72 1.31 0.27 1.43 + 20.64
cam #1 6.0ˆ11.0 – / 0.32 – / 1.07 – 0.26 1.11 0.88 1.27 0.21 1.06 + 20.13
cam #2 6.0ˆ11.0 – / 0.32 – / 1.60 – 0.36 1.62 0.72 1.74 0.32 1.38 + 11.47
I total – / 0.35 – / 1.22 – 0.32 1.33 0.77 1.44 0.27 1.29 + 17.41

Industry Scenario #2 is designed to evaluate for un-
known trajectories. Hence, training trajectories represent
an orthogonal grid, and test trajectories are diagonal. In
total, ViPR improves the position accuracy by 30.2 % on
average (min.: 17.87 %; max.: 46.49 %). Surprisingly, the
orientation error is comparable for all architectures, except
ViPR. We think that this is because ViPR learns to opti-
mize its position based on the APR- and RPR- orientations,
and hence, exploits these orientations to improve its posi-
tion estimate, that we prioritized in the loss function. APR-
only yields an average position accuracy of 0.27m, while
the pure PoseNet yields position errors of 0.36m on av-
erage, but APR+LSTM results in an even worse accuracy
of 1.69m. Instead, the novel ViPR outperforms all signifi-
cantly with 0.2m. Compared to our APR+LSTM approach,
we think that ViPR on the one hand interprets and compen-
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Figure 8: Exemplary comparison of APR, ViPR, and a baseline
(ground truth) trajectory of the Industry datasets.

sates the (long-term) drift of RPR and on the other hand
smooths the short-term errors of APR, as PE counteracts the
accumulation of RPR’s scaling errors with APR’s absolute
estimates. Here, the synergies of the networks in ViPR are
particularly effective. This is also visualized in Fig. 8a: the
green (ViPR) trajectory aligns more smoothly to the blue
baseline when the movement direction changes. This also
indicates that the RPR component is necessary to generalize
to unknown trajectories and to compensate scaling errors.

Dynamic motion evaluation. In contrast to the other
datasets, the Industry Scenario #3 includes fast, large-scale,
and high dynamic ego-motion in both training and test
datasets. However, all estimators result in similar find-
ings as Scenario #2 as both scenarios embed motion dy-
namics and unknown trajectory shapes. Accordingly, ViPR
again improves the position accuracy by 17.41 % on aver-
age (min.: 11.47 %; max.: 20.64 %), but this time exhibits
very similar orientation errors. Improved orientation accu-
racy compared to Scenario #2 is likely due to diverse orien-
tations available in this dataset’s training.

Fig. 8b shows exemplary results that visualize how ViPR
handles especially motion changes and motion dynamics
(see the abrupt direction change between x P r8 ´ 9sm
and y P r14 ´ 16sm). The results also indicate that ViPR
predicts the smoothest and most accurate trajectories on un-
known trajectory shapes (compare the trajectory segments
between x P r11 ´ 12sm and y P r14 ´ 16sm). We
think the reason why ViPR significantly outperforms APR
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Figure 9: Exemplary RPR-results (displacements m) against the
baseline (ground truth) on the Scenario #3 dataset (see Fig. 7d).

by 20.13 % here is because of the synergy of APR, RPR,
and PE. RPR contributes most in fast motion-changes, i.e.,
in motion blur situation. The success of RPR may also
indicate that RPR differentiates between ego- and feature-
motion to more robustly estimate a pose.

5.3. Evaluation of the RPR-Network

We use the smaller FlowNet2-s [25] variant of
FlowNet2.0 as this has faster runtimes (140 Hz), and
use it pretrained on the FlyingChairs [19], ChairsSDHom
and FlyingThings3D datasets. To highlight that RPR con-
tributes to the accuracy of the final pose estimates of ViPR,
we explicitly test it on the Industry Scenario #3 that embeds
dynamic motion of both ego- and feature-motion. The dis-
tance between consecutive images is up to 20 cm, see Fig. 9.
This results in a median error of 2.49 cm in x- and 4.09 cm
in y-direction on average (i.e., the error is between 12.5 %
and 20.5 %). This shows that the RPR yields meaningful re-
sults for relative position regression in a highly dynamic and
difficult setting. It furthermore appears to be relatively ro-
bust in its predictions despite both ego- and feature-motion.

5.4. Discussion

6DoF Pose Regression with LSTMs. APR-only in-
creases the positional accuracy over PoseNet for all
datasets, see Tab. 1. We found that the position er-
rors increase when we use methods with independent and
single-layer LSTM-extensions [77, 79, 58, 65] on both the
7-Scenes and the Industry datasets, by 0.04m up to
2.07m. This motivated us to investigate stacked LSTM-
layers only for the RPR- and PE-networks. We support the
statement of Seifi et al. [65] that the motion between con-
secutive frames is too small, and thus, naive CNNs are al-
ready unable to embed them. Hence, additionally connected
LSTMs are also unable to discover and track meaningful
temporal and contextual relations between the features.

Influence of RPR to ViPR. To figure out the informa-
tion gain of the RPR-network we also constructed ViPR in a
closed end-to-end architecture through direct concatenation
of the CNN-encoder-output (APR) and the LSTM-output
(RPR). For a smaller OF-input (3 ˆ 3) of the RPR-model
the accuracy of the 7-Scenes [66] dataset increases, but

decreases for the Industry dataset. This stems from the fact
that the relative movements of the 7-Scenes dataset are
too small (ă 2 cm) compared to the Industry dataset (ap-
prox. 20 cm). Hence, ViPR’s contribution is limited here.

Comparison of ViPR to state-of-the-art methods.
VLocNet++ [59] currently achieves the best results on
7-Scenes [66], but due to the small relative movement
and the high ground truth error compared to VLocNet’s
results a plausible evaluation is not possible regarding in-
dustrial applications. MapNet [8] achieves (on average)
better results than ViPR on the 7-Scenes dataset, but re-
sults in a similar error, e.g., 0.30m and 12.08˝ on the stairs
set against ViPR’s 0.31m and 12.65˝. MapNet has an im-
provement of 8.7 % over PoseNet2 [32] and achieves
41.4m and 12.5 ˝ on the RobotCar [47] dataset. How-
ever, a fair evaluation on this dataset with state-of-the-art
methods requires results and code from VLocNet [72, 59].

Runtimes. The training of the APR takes 0.86 s per
iteration for a batch size of 50 (GoogLeNet [68]) on our
hardware setup. The training of the RPR and PE is faster
(0.065 s) even at a higher batch size of 100, as these models
are smaller (214,605, resp. 55,239, parameters). Hence, it
is possible to retrain the PE-network quickly upon environ-
ment changes. The inference time of ViPR is between 7 ms
and 9 ms per sample (PoseNet: avg. 5 ms, FlowNet2-s:
avg. 9 ms). In addition, ViPR does not require domain
knowledge to provide scenario-dependent applicability, nor
does it need a compute-intensive matcher like brute force
or RANSAC [67, 6]. However, instead of PoseNet, ViPR
can also use such classical approaches in its modular pro-
cess pipeline. DenseVLAD [71] and classical approaches
are 10x (200-350 ms/sample) more computationally inten-
sive than today’s deep pose regression variants.

6. Conclusion

In this paper, we addressed typical challenges of
learning-based visual self-localization of a monocular cam-
era. We introduced a novel DL-architecture that makes use
of three modules: an absolute and a relative pose regres-
sor module, and a final regressor that predicts a 6DoF pose
by concatenating the predictions of the two former modu-
larities. To show that our novel architecture improves the
absolute pose estimates, we compared it with a publicly
available dataset and proposed novel Industry datasets that
enable a more detailed evaluation of different (dynamic)
movement patterns, generalization, and scale transitions.
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