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Abstract— We explore motion parameters, more specifically gait parameters, as an objective indicator to assess simulator sickness
in Virtual Reality (VR). We discuss the potential relationships between simulator sickness, immersion, and presence. We used two
different camera pose (position and orientation) estimation methods for the evaluation of motion tasks in a large-scale VR environment:
a simple model and an optimized model that allows for a more accurate and natural mapping of human senses. Participants performed
multiple motion tasks (walking, balancing, running) in three conditions: a physical reality baseline condition, a VR condition with the
simple model, and a VR condition with the optimized model. We compared these conditions with regard to the resulting sickness and
gait, as well as the perceived presence in the VR conditions. The subjective measures confirmed that the optimized pose estimation
model reduces simulator sickness and increases the perceived presence. The results further show that both models affect the gait
parameters and simulator sickness, which is why we further investigated a classification approach that deals with non-linear correlation
dependencies between gait parameters and simulator sickness. We argue that our approach could be used to assess and predict
simulator sickness based on human gait parameters and we provide implications for future research.

Index Terms—Human-centered computing, virtual reality, user studies, computing methodologies, perception, machine learning

1 INTRODUCTION

Today’s VR systems support learning, narrative experiences, gaming,
physical and psychological therapy, enabling users to move and navi-
gate in the simulations using various interaction metaphors [60, 77],
etc. For a convincing experience of the simulation, users have to feel
comfortable, become involved, and experience presence, the sense of
“being there” [20, 57, 87] or feeling a “place illusion” [68].

While presence is a phenomenon of everyday life [13] it lays at
the center of a virtual experience and can be further distinguished by
physical, social and self-related aspects [39], or assessment factors
that build on involvement, sensory fidelity, realism, interface quality,
adaptation, and immersion [86]. Skarbez et al. [64] provide a survey on
self-reported, behavioral, psychological, and physiological measures
of presence. Immersion was identified as an important factor that fa-
cilitates the perception of presence [66, 70]. In contrast to presence,
immersion can be described as a technologically-driven concept: “The
more that a system delivers displays (in all sensory modalities) and
tracking that preserves fidelity in relation to their equivalent real-world
sensory modalities, the more that it is ‘immersive’.” [66]. A perfect im-
mersion would hence require a one-to-one mapping of all senses from
the real to the virtual world [4]. Mapping inaccuracies and simulation
errors, e.g., position or orientation tracking errors, latency, jitter, and
flicker disturb the user and cause simulator sickness [37, 76, 90], the
analogon of motion-sickness [29]. Vice versa, Slater argues that the
place illusion strongly depends on sensorimotor contingencies in all
sensory modalities, i.e., an accurate and consistent mapping between
physical actions and virtual feedback [68]. Fig. 1 summarizes our
interpretation of the literature: A better mapping accuracy, e.g., highly
accurate sensors and simulations that capture and map motion more
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realistically, can yield a higher immersion. In turn, a more accurate
mapping can reduce cue conflicts and thus simulator sickness [27, 71].
Higher immersion and lower sickness can foster the user’s perception
of presence, and further support the suspension of disbelief. How-
ever, a high level of simulator sickness seems to hinder and suppress
presence [46]. Note that a high immersion is not the only boundary
condition for presence, e.g., in desktop systems, users may perceive
presence, but they are also bound to longer exposure, deliberate atten-
tion, and learning [68]. For example, users have to learn and process
mappings between (abstracted) physical action and virtual feedback.

While immersion can be objectively measured [66], for example by
assessing the degrees of freedom of movement, or the field of view,
presence is a phenomenon of subjective perception and is thus difficult
to assess objectively. Despite debates [65, 67], questionnaires such as
the Slater-Usoh-Steed or the Presence Questionnaire (PQ) [70, 87, 88]
are widely adopted. Similarly, questionnaires are the current practice to
assess simulator sickness. It has been argued to differentiate cybersick-
ness from simulator sickness [75]. Yet, assessing simulator sickness
is widely adopted in VR research. Most commonly, the simulator
sickness questionnaire (SSQ) [29], the fast SSQ [31], or nausea rating
scales [43,56] are employed. According to Meehan et al. [25], valuable
measurement instruments should be reliable (produce repeatable results
within and across subjects), valid (measuring the underlying construct),
sensitive (discriminate amongst multiple outcome levels), and objective
(well shielded from the subject and experimenter bias). In general,
questionnaires are time-consuming for the participant and suffer from
structural disadvantages. For example, they are difficult to administer
during the stimulus presentation, so that often shorter oral (in-situ)
questionnaires are used. Post-exposure measures are time delayed and
thus may not capture the maximal sickness level. Further disadvantages
are a potential bias or reliability issues (e.g., inconsistencies due to
structures that assess latent variables) [31, 67].

We argue that if simulator sickness results in similar symptoms than
motion sickness, such as sweating, nausea, and losing balance [27, 30],
it results in similar physiological as well as motoric reflexes and re-
strictions. Hence, it should be objectively measurable. Researchers
and practitioners may have observed users that restrict their move-
ment pace, stumble, or have difficulties to execute precise movements
because of latency and sickness, as users suffer from postural distur-
bance (also known as postural instability, postural disequilibrium, or
ataxia) [30,35,80]. An objective and implicit measure to assess simula-
tor sickness through motion parameters may be of great benefit to VR
researchers and applicants, as a real-time simulator sickness indicator
may allow for a controlled exposure or a dynamic content adaptation
in response to sickness. We propose to use gait motion parameters
for an objective sickness assessment, as gait is most likely to suffer

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 11, NOVEMBER 2019 3146

Manuscript received 22 Mar. 2019; accepted 8 July. 2019.
Date of publication 13 Aug. 2019; date of current version 25 Oct. 2019.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2019.2932224

1077-2626 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

causes

Presence

Presence

High 

Low 

Simulator
Sickness

Low

High

Mapping accuracy 
of human senses

High 

Low 

Immersion
enables

contributes

fosters

suppresses

enables

Fig. 1. Relationships between technical concepts.

from simulator sickness and as gait motion is most likely a motion that
is present in many VR simulations. While previous work measured
or manipulated gait variables in VR [1, 12, 23–25, 41, 45, 48, 52] or
suggested pose measures to assess sickness [17, 30, 80], there is no
work yet on the impact of simulation characteristics on gait parameters
and simulator sickness, and their relationship with presence.

1.1 Contributions
We present novel findings on the impact of simulation characteristics on
gait, simulator sickness, and presence, and argue for motion parameters
as a potential measure to assess simulator sickness. There are four
main contributions. (1) We used two pose estimation models (i.e.,
methods for camera pose tracking in a large-scale VR environment that
sense and map a user’s camera pose from the real to the virtual world)
with different characteristics: a simple approach that induces more
(varying) latency and results in a lower accuracy of the mapping of
human senses, and an optimized approach that preserves the fidelity of
sensory modalities and allows for a higher immersion. (2) We compared
both models and a non-VR baseline in a user study with 34 participants
in repeated measures. We find that the optimized model significantly
decreases simulator sickness, significantly increases presence, and
significantly impacts gait parameters. (3) We discuss the stability of the
gait parameters as a comparison measure as well as a direct (singular)
measure of sickness. (4) We classify the models of origin as well as
the sickness level based on different parameter sets which implies the
potential for a real-time sickness assessment via gait parameters.

1.2 Structure
Sec. 2 reviews related work. Sec. 3 discusses our apparatus and pose
estimation models along with the description of the evaluative study.
Sec. 4 presents the results, further investigating gait parameters as
sickness indicator. Sec. 5 describes our classification approach. After a
discussion in Sec. 6, we conclude.

2 RELATED WORK

2.1 Relations of Simulator Sickness and Presence
With regard to presence, Borrego et al. [6] evaluate both presence
and motion-sickness in their small-scale VR system (5 × 5 m) but
they do not consider gait parameters. Similar to simulator sickness,
the refresh rate and latency seem to affect the perceived presence.
Meehan et al. [46] show that a frame rate per second > 15 yields good
presence scores [46]. A motion-to-photon latency >100 ms decreases
presence [47]. Other sickness affecting characteristics are also found to
affect presence. Recent studies [54,90] do not find sickness differences
between 18 ms and 90 ms of latency, but between constant and varying
latency. Although we make use of these findings in our models, results
are not directly comparable, as the human senses that are stimulated
throughout all experiments vary. Our users walk freely on a large space,
thus perception and its effects may differ.

2.2 Objective Measures for Simulator Sickness
Early works use so-called postural equilibrium tests [17, 30, 80] to
objectively assess sickness symptoms, i.e., dynamic and static pose
assessment such as standing on one leg or walking on a line with eyes
open or close. Hamilton et al. [17] criticize the reliability of these
tests. Closest to our approach, Kemeny et al. [26] show that fast head

rotations in VR induce postural instabilities and increase simulator
sickness. Supporting these findings, Villard et al. and Li et al. [41] find
that visual oscillations induce both postural instability (e.g., changes
in the body sway) and simulator sickness over time. While we are
inspired by these results, our proposed approach uses an assessment of
gait parameters and automated analyses. Furthermore, we do not need
a phase for the participant to train certain poses compared to postural
equilibrium tests.

Previous works also investigate visually induced self-motion be-
tween frames to estimate motion sickness by analyzing the optical
flow [38], assess scene movement [73], or predict motion-sickness by
applying deep convolutional autoencoders (trained on video streams
with and without motion-sickness) [33]. In contrast to our work, these
works rely on visually induced motion sickness (movement produced by
purely visual stimulation, i.e., vection) which by itself causes simulator
sickness [32].

Bertin et al. [3] discover relationships between simulator sickness
and skin resistance as well as skin temperature, both of which were
lower in sick than in non-sick participants of a driving simulator.
When seated subjects are perturbed by virtual visual stimuli this causes
changes in physiological parameters (e.g., heartbeat, skin conductivity
or temperature, breathes per epoch) [8] which can be used to deter-
mine simulator sickness [46]. While such parameters can be a reliable
measure, they are complicated to assess in movement tasks or physical
activity as in our situation.

2.3 Gait in VR
Spatio-temporal gait parameters such as the stance or swing time, step
length, or angular relations can reliably describe human gait perfor-
mance [23]. As such, gait analysis in VR can be used as a means to
investigate gait performance and to assess functional mobility [77] and
to inspect impacts of simulation characteristics. Boone et al. [5] explore
gait parameters in VR as a measure of rehabilitation. Thompson et
al. [81] technically evaluate the effect of perturbed optical flow on
the gait balance and the regulation of walking control, but they do
not link their findings to simulator sickness or presence. Hollman et
al. [21, 22] use a VE with oscillating visuals to induce gait instability
in treadmill-based walking (compensatory efforts to control the body’s
mass). Lansink et al. [36] use a treadmill and compare VR with the
physical world. They find that gait parameters reflect instability (stride
length or width, velocity), suggesting that walking in a VE induces
instability even to healthy subjects.

Even though unnatural navigation techniques (e.g., walking in place,
flying, teleportation, or joystick movement) impact presence, affect
gait, and add discomfort in VR, while more natural walking techniques
increase presence and decrease sickness [69, 83], related work that
considers movement often makes such restrictions [23]. Thus, the
regularized gait and its characteristics [74] render the results only
partially applicable to redirected walking or free walking. For example,
Rieser et al. [58] find that humans constrain their self-motion to become
unnatural or tensed in unknown and limited environments. To avoid this
bias, we evaluate gait parameters, sickness, and presence with natural
walking. Yet, differences to the physical world can occur. Mohler et
al. [49] find that participants had a shorter stride length, slower walking
velocity, and lower head-trunk angle in VR compared to real-world
walking. Therefore, we also compare our pose estimation models to a
real-world baseline.

With regard to mapping accuracy and superficial mapping, Janeh
et al. [23] define the terms isometric (one-to-one mapping of real
and virtual movement) and non-isometric (e.g., added translational
gain) [23, 24]. Non-isometric mapping causes a divergence in spatio-
temporal gait parameters for participants of all ages.

In summary, these studies show distinct effects of navigation tech-
niques and the simulation characteristics on gait parameters.

2.4 Gait Classification
Preliminary research [2,18,63,78] detects alterations in gait parameters
by various methods that examine spatial measures [2] or temporal
dynamics of movement [78]. From large amounts of input data, deep
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1 INTRODUCTION

Today’s VR systems support learning, narrative experiences, gaming,
physical and psychological therapy, enabling users to move and navi-
gate in the simulations using various interaction metaphors [60, 77],
etc. For a convincing experience of the simulation, users have to feel
comfortable, become involved, and experience presence, the sense of
“being there” [20, 57, 87] or feeling a “place illusion” [68].

While presence is a phenomenon of everyday life [13] it lays at
the center of a virtual experience and can be further distinguished by
physical, social and self-related aspects [39], or assessment factors
that build on involvement, sensory fidelity, realism, interface quality,
adaptation, and immersion [86]. Skarbez et al. [64] provide a survey on
self-reported, behavioral, psychological, and physiological measures
of presence. Immersion was identified as an important factor that fa-
cilitates the perception of presence [66, 70]. In contrast to presence,
immersion can be described as a technologically-driven concept: “The
more that a system delivers displays (in all sensory modalities) and
tracking that preserves fidelity in relation to their equivalent real-world
sensory modalities, the more that it is ‘immersive’.” [66]. A perfect im-
mersion would hence require a one-to-one mapping of all senses from
the real to the virtual world [4]. Mapping inaccuracies and simulation
errors, e.g., position or orientation tracking errors, latency, jitter, and
flicker disturb the user and cause simulator sickness [37, 76, 90], the
analogon of motion-sickness [29]. Vice versa, Slater argues that the
place illusion strongly depends on sensorimotor contingencies in all
sensory modalities, i.e., an accurate and consistent mapping between
physical actions and virtual feedback [68]. Fig. 1 summarizes our
interpretation of the literature: A better mapping accuracy, e.g., highly
accurate sensors and simulations that capture and map motion more
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realistically, can yield a higher immersion. In turn, a more accurate
mapping can reduce cue conflicts and thus simulator sickness [27, 71].
Higher immersion and lower sickness can foster the user’s perception
of presence, and further support the suspension of disbelief. How-
ever, a high level of simulator sickness seems to hinder and suppress
presence [46]. Note that a high immersion is not the only boundary
condition for presence, e.g., in desktop systems, users may perceive
presence, but they are also bound to longer exposure, deliberate atten-
tion, and learning [68]. For example, users have to learn and process
mappings between (abstracted) physical action and virtual feedback.

While immersion can be objectively measured [66], for example by
assessing the degrees of freedom of movement, or the field of view,
presence is a phenomenon of subjective perception and is thus difficult
to assess objectively. Despite debates [65, 67], questionnaires such as
the Slater-Usoh-Steed or the Presence Questionnaire (PQ) [70, 87, 88]
are widely adopted. Similarly, questionnaires are the current practice to
assess simulator sickness. It has been argued to differentiate cybersick-
ness from simulator sickness [75]. Yet, assessing simulator sickness
is widely adopted in VR research. Most commonly, the simulator
sickness questionnaire (SSQ) [29], the fast SSQ [31], or nausea rating
scales [43,56] are employed. According to Meehan et al. [25], valuable
measurement instruments should be reliable (produce repeatable results
within and across subjects), valid (measuring the underlying construct),
sensitive (discriminate amongst multiple outcome levels), and objective
(well shielded from the subject and experimenter bias). In general,
questionnaires are time-consuming for the participant and suffer from
structural disadvantages. For example, they are difficult to administer
during the stimulus presentation, so that often shorter oral (in-situ)
questionnaires are used. Post-exposure measures are time delayed and
thus may not capture the maximal sickness level. Further disadvantages
are a potential bias or reliability issues (e.g., inconsistencies due to
structures that assess latent variables) [31, 67].

We argue that if simulator sickness results in similar symptoms than
motion sickness, such as sweating, nausea, and losing balance [27, 30],
it results in similar physiological as well as motoric reflexes and re-
strictions. Hence, it should be objectively measurable. Researchers
and practitioners may have observed users that restrict their move-
ment pace, stumble, or have difficulties to execute precise movements
because of latency and sickness, as users suffer from postural distur-
bance (also known as postural instability, postural disequilibrium, or
ataxia) [30,35,80]. An objective and implicit measure to assess simula-
tor sickness through motion parameters may be of great benefit to VR
researchers and applicants, as a real-time simulator sickness indicator
may allow for a controlled exposure or a dynamic content adaptation
in response to sickness. We propose to use gait motion parameters
for an objective sickness assessment, as gait is most likely to suffer
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from simulator sickness and as gait motion is most likely a motion that
is present in many VR simulations. While previous work measured
or manipulated gait variables in VR [1, 12, 23–25, 41, 45, 48, 52] or
suggested pose measures to assess sickness [17, 30, 80], there is no
work yet on the impact of simulation characteristics on gait parameters
and simulator sickness, and their relationship with presence.

1.1 Contributions
We present novel findings on the impact of simulation characteristics on
gait, simulator sickness, and presence, and argue for motion parameters
as a potential measure to assess simulator sickness. There are four
main contributions. (1) We used two pose estimation models (i.e.,
methods for camera pose tracking in a large-scale VR environment that
sense and map a user’s camera pose from the real to the virtual world)
with different characteristics: a simple approach that induces more
(varying) latency and results in a lower accuracy of the mapping of
human senses, and an optimized approach that preserves the fidelity of
sensory modalities and allows for a higher immersion. (2) We compared
both models and a non-VR baseline in a user study with 34 participants
in repeated measures. We find that the optimized model significantly
decreases simulator sickness, significantly increases presence, and
significantly impacts gait parameters. (3) We discuss the stability of the
gait parameters as a comparison measure as well as a direct (singular)
measure of sickness. (4) We classify the models of origin as well as
the sickness level based on different parameter sets which implies the
potential for a real-time sickness assessment via gait parameters.

1.2 Structure
Sec. 2 reviews related work. Sec. 3 discusses our apparatus and pose
estimation models along with the description of the evaluative study.
Sec. 4 presents the results, further investigating gait parameters as
sickness indicator. Sec. 5 describes our classification approach. After a
discussion in Sec. 6, we conclude.

2 RELATED WORK

2.1 Relations of Simulator Sickness and Presence
With regard to presence, Borrego et al. [6] evaluate both presence
and motion-sickness in their small-scale VR system (5 × 5 m) but
they do not consider gait parameters. Similar to simulator sickness,
the refresh rate and latency seem to affect the perceived presence.
Meehan et al. [46] show that a frame rate per second > 15 yields good
presence scores [46]. A motion-to-photon latency >100 ms decreases
presence [47]. Other sickness affecting characteristics are also found to
affect presence. Recent studies [54,90] do not find sickness differences
between 18 ms and 90 ms of latency, but between constant and varying
latency. Although we make use of these findings in our models, results
are not directly comparable, as the human senses that are stimulated
throughout all experiments vary. Our users walk freely on a large space,
thus perception and its effects may differ.

2.2 Objective Measures for Simulator Sickness
Early works use so-called postural equilibrium tests [17, 30, 80] to
objectively assess sickness symptoms, i.e., dynamic and static pose
assessment such as standing on one leg or walking on a line with eyes
open or close. Hamilton et al. [17] criticize the reliability of these
tests. Closest to our approach, Kemeny et al. [26] show that fast head

rotations in VR induce postural instabilities and increase simulator
sickness. Supporting these findings, Villard et al. and Li et al. [41] find
that visual oscillations induce both postural instability (e.g., changes
in the body sway) and simulator sickness over time. While we are
inspired by these results, our proposed approach uses an assessment of
gait parameters and automated analyses. Furthermore, we do not need
a phase for the participant to train certain poses compared to postural
equilibrium tests.

Previous works also investigate visually induced self-motion be-
tween frames to estimate motion sickness by analyzing the optical
flow [38], assess scene movement [73], or predict motion-sickness by
applying deep convolutional autoencoders (trained on video streams
with and without motion-sickness) [33]. In contrast to our work, these
works rely on visually induced motion sickness (movement produced by
purely visual stimulation, i.e., vection) which by itself causes simulator
sickness [32].

Bertin et al. [3] discover relationships between simulator sickness
and skin resistance as well as skin temperature, both of which were
lower in sick than in non-sick participants of a driving simulator.
When seated subjects are perturbed by virtual visual stimuli this causes
changes in physiological parameters (e.g., heartbeat, skin conductivity
or temperature, breathes per epoch) [8] which can be used to deter-
mine simulator sickness [46]. While such parameters can be a reliable
measure, they are complicated to assess in movement tasks or physical
activity as in our situation.

2.3 Gait in VR
Spatio-temporal gait parameters such as the stance or swing time, step
length, or angular relations can reliably describe human gait perfor-
mance [23]. As such, gait analysis in VR can be used as a means to
investigate gait performance and to assess functional mobility [77] and
to inspect impacts of simulation characteristics. Boone et al. [5] explore
gait parameters in VR as a measure of rehabilitation. Thompson et
al. [81] technically evaluate the effect of perturbed optical flow on
the gait balance and the regulation of walking control, but they do
not link their findings to simulator sickness or presence. Hollman et
al. [21, 22] use a VE with oscillating visuals to induce gait instability
in treadmill-based walking (compensatory efforts to control the body’s
mass). Lansink et al. [36] use a treadmill and compare VR with the
physical world. They find that gait parameters reflect instability (stride
length or width, velocity), suggesting that walking in a VE induces
instability even to healthy subjects.

Even though unnatural navigation techniques (e.g., walking in place,
flying, teleportation, or joystick movement) impact presence, affect
gait, and add discomfort in VR, while more natural walking techniques
increase presence and decrease sickness [69, 83], related work that
considers movement often makes such restrictions [23]. Thus, the
regularized gait and its characteristics [74] render the results only
partially applicable to redirected walking or free walking. For example,
Rieser et al. [58] find that humans constrain their self-motion to become
unnatural or tensed in unknown and limited environments. To avoid this
bias, we evaluate gait parameters, sickness, and presence with natural
walking. Yet, differences to the physical world can occur. Mohler et
al. [49] find that participants had a shorter stride length, slower walking
velocity, and lower head-trunk angle in VR compared to real-world
walking. Therefore, we also compare our pose estimation models to a
real-world baseline.

With regard to mapping accuracy and superficial mapping, Janeh
et al. [23] define the terms isometric (one-to-one mapping of real
and virtual movement) and non-isometric (e.g., added translational
gain) [23, 24]. Non-isometric mapping causes a divergence in spatio-
temporal gait parameters for participants of all ages.

In summary, these studies show distinct effects of navigation tech-
niques and the simulation characteristics on gait parameters.

2.4 Gait Classification
Preliminary research [2,18,63,78] detects alterations in gait parameters
by various methods that examine spatial measures [2] or temporal
dynamics of movement [78]. From large amounts of input data, deep
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neural networks can extract the information that is necessary to classify
gait [18]. According to Smith et al. [72], the walking speed affects the
spatio-temporal gait parameters in a non-linear way. However, there
are also non-linearities in sensor measurements and hence, to interpret
the sensor data and the gait parameters correctly, at least a second-order
polynomial function is needed. This is in line with findings in [44, 53].
They use spatio-temporal features (from time and frequency domain)
and apply a non-linear solver (e.g., Support Vector Machine) to derive
the characteristics of gait and to provide an accurate classification
of typical gait parameters. Our classification approach adopts their
findings, classifies (non-linear) gait parameters, and predicts simulator
sickness levels.

2.5 Hypotheses
Previous works separately investigated the effects of simulation chara-
cteristics on gait parameters, simulator sickness, and presence. As
they review simulation latency and cue conflicts as a strong cause of
simulator sickness, we hypothesize H1: A more natural pose estimation
model results in less sickness.

As according to the literature, gait parameters seem to be affected
by the characteristics of the simulation and the respective mapping
accuracy we study H2: A more natural pose estimation model impacts
the gait in VR exposure.

As the perceived presence seems to be higher in simulations that
have a higher one-to-one mapping and accuracy we hypothesize H3: A
more natural pose estimation model results in a higher presence.

While the related work has studied the presumed effects, the inter-
connection between sickness and gait is mostly unstudied. Hence, our
research question is RQ: Are gait parameters an objective measure of
simulator sickness?

3 METHOD

We use two different pose estimation models for a large-scale (40 m ×
35 m) environment: a simple but unnatural model Ms and an optimized
model Mo (we used a reduced portion (15 m × 7 m) as the running
task implies that participants need space to be able to decelerate and
stop). After pre-testing these models, we evaluate them using a within-
subjects design (as simulator sickness is individual per subject). We
compare a non-VR baseline Mb, Ms, and Mo. For the baseline and for
both models, participants perform multiple motion tasks. By measuring
simulator sickness and presence as well as the objective outcomes for
the gait parameters, we assess the relationships between the model
parameters and the dependent measures, see Fig. 2. Furthermore, we
evaluate a classifier.

3.1 Apparatus
We used the Unity3D engine (version 2017.4.1) to create our VR
simulation. We displayed it with a Samsung Galaxy Note 4 smartphone
(Android 6.0.1, Qualcomm Snapdragon 805 CPU, and 3 GB RAM)
mounted to a Samsung GearVR HMD (version SM-R320, and 6 DOF
Bosch BMI055 inertial measurement unit, IMU) which senses the
user orientation. An InvenSense (MPU-6500) 6 DOF IMU was also
attached to the HMD to classify the movement for the pose estimation
models. We tracked user positions with RedFIR, an RF-based real-time
location system (RTLS) using a single radio-frequency sensor, also
attached to the HMD, see Fig. 3(a), that covers a space of up to 300 m
× 300 m and is adaptable to 5G.

RedFIR implements a Kalman filter algorithm [15] that provides
smooth positions with a circular error probable (i.e., horizontal accu-
racy) in 95% (CEP95) of < 10.2 cm and a precision of < 2.6 cm in

both static and dynamic motion situations. The accuracy is the abso-
lute accuracy of a measurement to match a corresponding reference
point. In contrast, precision describes how accurate several repeated
measures match the corresponding reference position. For our pose
estimation models, the accuracy does not matter, as the absolute point
accuracy in relation to physical space is irrelevant for our experiment.
The precision, however, is important. The worse the precision, the
more jumpy, jittery, and unnatural the position is. Precision can be
considered as a Gaussian distribution that jumps around a global opti-
mum, i.e., the reference position. RedFIR’s loss rate is 0.0046 Hz on
avg. Other open-source tracking systems may be used to reproduce our
experiments [82].

As the HMD-estimated head orientations suffer from long-term
yaw drift, we (re-)calibrated the absolute head orientation (and the
corresponding VR-image) for every participant before a new task [9,10].
To measure the gait parameters, we used eGait and two Shimmer IMU
sensors [2], see Fig. 3(b), mounted to the same type of shoe (varying
sizes to fit) for every participant. The eGait application on an Apple
iPad Pro tablet used Bluetooth to communicate with the sensors to
record their data streams, to perform the stride segmentation, the feature
extraction, and to derive the gait parameters (details in Sec. 3.4.3).

Fig. 4 shows the real world and its virtual counterpart. W , B, and R
represent the trajectories for the Walking, Balancing, and Running tasks.
S is a slalom path that was only used in the VR (details in Sec. 3.3).
The test environment was bright and free of noise. To make users
more sensitive to small movements and to provoke sickness reactions,
the outer floor of the VR scene was textured with a (1.0 m × 1.0 m)
black-and-white checkerboard pattern, the inner floor with a (10 cm
× 10 cm) green checkerboard pattern, colored pillars, and a plank for
balancing, see Fig. 4(b,c).

3.1.1 Simple Pose Estimation Model Ms

For the experiments with the simple pose estimation model Ms we
use both the absolute positions provided by the RTLS [15] and the
calibrated (absolute) orientations from the Samsung GearVR (official
Occulus orientation estimates) to render the pose, and thus the esti-
mated camera viewpoint for the participant. While the orientation
stream constantly delivers close to 60 orientations per second, the po-
sition stream only provides 20 updates per second. As we render the
virtual world at a quasi-constant rate of 60 Hz, the orientation update
frequency suffices [10, 76]. But the low update frequency of the posi-
tions (to render the VR view) introduces a varying motion-to-photon
delay (MTP) of 246.34 ms on avg. (N = 87, min. 198.7 ms, max. 319.6
ms, SD 76.4 ms). We assessed MTP as the latency between physical
translational (head) movement and the according visual feedback (dis-
play) [19,42]. Whereas the rendering frame rate/frequency describes
the simulation/display refresh rate, the MTP describes the latency (de-
lay) of the position updates. We measured the positional MTP by frame
counting [19]. Therefore, we simultaneously recorded sensor move-
ments and the resulting screen response in repeated measures with a
high-speed camera (1000 Hz) and then assessed the number of frames
between physical motion apexes and the corresponding screen response

(a) HMD and position sensor. (b) Shoe with the inertial sensor.

Fig. 3. (a) Samsung GearVR HMD (provides relative head orientation)
and RedFIR position sensor (in the circle, provides absolute head posi-
tion); (b) eGait system (in the circle, Shimmer Inertial-Navigation-Sensor
(INS) that delivers gait information).

(a) Side-view of the real environment. (b) Side-view of the virtual environment. (c) User-perspective of the virtual environment.

Fig. 4. Real and virtual environment of our experiments. Paths on which users (W)alk, (B)alance, (R)un, and perform a (S)lalom walk.

(note: the HMD renders at 60 Hz, hence the screen response varies,
SD 16.6 ms). The RTLS yields a precision error of < 2.6 cm. The
Kalman filter (KF) that is used in the positioning system suffers from
sudden movement changes which result in over- and undershooting of
the estimated trajectory. Hence, the mapping between real and virtual
motion is incorrect, which facilitates simulator sickness. Thus, our
simple model does move while standing still. This jitter is noticeable
when standing still (subjective judgment), i.e., while moving it feels a
bit like being held.

3.1.2 Optimized Pose Estimation Model Mo

Our optimized model Mo uses the same orientations and positions as
Ms. But this time, we use the absolute positions in combination with the
head orientations (provided by the Samsung GearVR) to calculate con-
trol points of a Kochanek-Bartels-Spline with parameters T ension=1,
Bias=-1, and Continuity=0 [34]. This yields a precision error of unno-
ticeable < 0.01 mm. Thus, our optimized model does not move while
standing still.

Technically, the magnitude (velocity) of the spline’s tangent repre-
sents the motion displacement, which we determine based on distances
of consecutive absolute positions. As the KF of the tracking system [15]
is parameterized to yield responsive but inaccurate and varying posi-
tions, we smooth the position with a head motion state (square root
magnitude of the accelerometer and gyroscope sensors from the HMD).
By correctly classifying the current motion state of a user’s head we
cap over- and undershooting of position changes. We exploit the fact
that humans tend to move towards their viewing direction more fre-
quently [9, 10]. Hence, we extrapolate the future control points (that
steer the tangents and thus the view of the HMD) based on the orienta-
tion of the position vector (provided by the last positions by about 25%)
and the absolute yaw head orientation (by about 75%). Thus, we can
extrapolate the future position. Since we know that humans either tend
to adapt to insignificant motion errors [59] or tolerate yaw orientation
offsets below 20° while walking [10], our algorithm can make small
mistakes. The high-rated motion state and its local processing on the
HMD thus yields an accurate mapping of human senses and a smaller
and constant MTP delay of 116.3 ms on avg. (N = 91, min. 98.5 ms,
max. 148.3 ms, SD 18.7 ms), see Fig. 5.

For Mo, the tcb-spline enables the camera to move on fast cornering
rides, i.g., when users turn abruptly, the tcb-spline can directly switch
the direction. Moreover, t-clipping helps to avoid damping or overshoot-
ing and reduces the number of mispredictions. The combination of a
weighted motion state classification and view-direction-based weighted
extrapolation (to dip the movement along the tangent per delta time)
yields a responsive, more natural pose estimation model. Finally, by
adjusting the weights, i.e., adding/subtracting to/from each fragment
per frame, we can unnoticeably compensate for accumulating errors.

3.1.3 Rendering

We always render the simulation at a fixed frame rate of 60 Hz (loss
rate < 0.1 Hz). We update the camera position at 20 Hz (RTLS raw
positions) for Ms. For Mo, we extrapolate in-between at 60 Hz (a
Kalman filter fuses IMU data at 100 Hz and RTLS raw positions at

20 Hz) with the tcb-spline. In both models, we always update the
camera orientation at 60 Hz (calibrated GearVR orientation estimates).
Note, the camera position and orientation are updated independently
according to the pipeline in Fig. 5.

3.1.4 Pretest

In a preliminary experiment, we evaluated the configuration parameters
of Ms and Mo and determined user perception. The pretest revealed
that subjects (N = 46, 24 male, 22 female, Mage = 25.03) felt (based
on self-reported measures) less sick, more natural, more comfortable,
and more involved when we render the virtual view with Mo. We thus
employed these models for the main study.

3.2 Motion Tasks

We designed the tasks according to the related findings [16, 35, 50, 51].
According to [35, 50, 51] sickness is not only a function of motion-
to-photon latency or inaccurate mapping of human senses, but also
depends on the task. The more complex the task is and the longer it
takes, the more sickness it causes. The tasks reflect what we believe is
typical for large-scale VR simulations [62]. We gave instructions orally
based on an experimenter protocol.

Walking (W). We asked the participants to naturally walk forward
three times on a 15 m long straight path while we recorded their gait.
For the baseline task TMb , we asked the participants to walk at a natu-
ral speed with either free or rigid head orientation. We introduced
secondary-level objectives to account for a controlled exposure and
focus in the VR assessments. In the first iteration of the VR assessments
TMs and TMo , we asked participants to walk at a natural speed with
non-rigid head orientation. In the second iteration, we encourage the
participants to focus on far-away objects (green or yellow cubes) or
near objects (e.g., the floor) while they walked along the path W . In the
third iteration, we asked them to look to the left or right and to focus on
far-away objects (red or blue cubes) or near objects (e.g., gray pylons).

Balancing (B). We asked the users to balance three times (as pre-
cisely as they can, i.e., with as few sidesteps as possible) naturally on a
15 m long and 10 cm wide virtual plank, see Fig. 4(c).

Running (R). We asked the participants to run three times (as fast
as they can) naturally along the 15 m long path with free head orien-
tation. We asked the participants to only stop running after leaving
the measurement area (hence, in total they ran about 20 m but we also
recorded the gait for 15 m). For the tasks TMs and TMo we encouraged
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neural networks can extract the information that is necessary to classify
gait [18]. According to Smith et al. [72], the walking speed affects the
spatio-temporal gait parameters in a non-linear way. However, there
are also non-linearities in sensor measurements and hence, to interpret
the sensor data and the gait parameters correctly, at least a second-order
polynomial function is needed. This is in line with findings in [44, 53].
They use spatio-temporal features (from time and frequency domain)
and apply a non-linear solver (e.g., Support Vector Machine) to derive
the characteristics of gait and to provide an accurate classification
of typical gait parameters. Our classification approach adopts their
findings, classifies (non-linear) gait parameters, and predicts simulator
sickness levels.

2.5 Hypotheses
Previous works separately investigated the effects of simulation chara-
cteristics on gait parameters, simulator sickness, and presence. As
they review simulation latency and cue conflicts as a strong cause of
simulator sickness, we hypothesize H1: A more natural pose estimation
model results in less sickness.

As according to the literature, gait parameters seem to be affected
by the characteristics of the simulation and the respective mapping
accuracy we study H2: A more natural pose estimation model impacts
the gait in VR exposure.

As the perceived presence seems to be higher in simulations that
have a higher one-to-one mapping and accuracy we hypothesize H3: A
more natural pose estimation model results in a higher presence.

While the related work has studied the presumed effects, the inter-
connection between sickness and gait is mostly unstudied. Hence, our
research question is RQ: Are gait parameters an objective measure of
simulator sickness?

3 METHOD

We use two different pose estimation models for a large-scale (40 m ×
35 m) environment: a simple but unnatural model Ms and an optimized
model Mo (we used a reduced portion (15 m × 7 m) as the running
task implies that participants need space to be able to decelerate and
stop). After pre-testing these models, we evaluate them using a within-
subjects design (as simulator sickness is individual per subject). We
compare a non-VR baseline Mb, Ms, and Mo. For the baseline and for
both models, participants perform multiple motion tasks. By measuring
simulator sickness and presence as well as the objective outcomes for
the gait parameters, we assess the relationships between the model
parameters and the dependent measures, see Fig. 2. Furthermore, we
evaluate a classifier.

3.1 Apparatus
We used the Unity3D engine (version 2017.4.1) to create our VR
simulation. We displayed it with a Samsung Galaxy Note 4 smartphone
(Android 6.0.1, Qualcomm Snapdragon 805 CPU, and 3 GB RAM)
mounted to a Samsung GearVR HMD (version SM-R320, and 6 DOF
Bosch BMI055 inertial measurement unit, IMU) which senses the
user orientation. An InvenSense (MPU-6500) 6 DOF IMU was also
attached to the HMD to classify the movement for the pose estimation
models. We tracked user positions with RedFIR, an RF-based real-time
location system (RTLS) using a single radio-frequency sensor, also
attached to the HMD, see Fig. 3(a), that covers a space of up to 300 m
× 300 m and is adaptable to 5G.

RedFIR implements a Kalman filter algorithm [15] that provides
smooth positions with a circular error probable (i.e., horizontal accu-
racy) in 95% (CEP95) of < 10.2 cm and a precision of < 2.6 cm in

both static and dynamic motion situations. The accuracy is the abso-
lute accuracy of a measurement to match a corresponding reference
point. In contrast, precision describes how accurate several repeated
measures match the corresponding reference position. For our pose
estimation models, the accuracy does not matter, as the absolute point
accuracy in relation to physical space is irrelevant for our experiment.
The precision, however, is important. The worse the precision, the
more jumpy, jittery, and unnatural the position is. Precision can be
considered as a Gaussian distribution that jumps around a global opti-
mum, i.e., the reference position. RedFIR’s loss rate is 0.0046 Hz on
avg. Other open-source tracking systems may be used to reproduce our
experiments [82].

As the HMD-estimated head orientations suffer from long-term
yaw drift, we (re-)calibrated the absolute head orientation (and the
corresponding VR-image) for every participant before a new task [9,10].
To measure the gait parameters, we used eGait and two Shimmer IMU
sensors [2], see Fig. 3(b), mounted to the same type of shoe (varying
sizes to fit) for every participant. The eGait application on an Apple
iPad Pro tablet used Bluetooth to communicate with the sensors to
record their data streams, to perform the stride segmentation, the feature
extraction, and to derive the gait parameters (details in Sec. 3.4.3).

Fig. 4 shows the real world and its virtual counterpart. W , B, and R
represent the trajectories for the Walking, Balancing, and Running tasks.
S is a slalom path that was only used in the VR (details in Sec. 3.3).
The test environment was bright and free of noise. To make users
more sensitive to small movements and to provoke sickness reactions,
the outer floor of the VR scene was textured with a (1.0 m × 1.0 m)
black-and-white checkerboard pattern, the inner floor with a (10 cm
× 10 cm) green checkerboard pattern, colored pillars, and a plank for
balancing, see Fig. 4(b,c).

3.1.1 Simple Pose Estimation Model Ms

For the experiments with the simple pose estimation model Ms we
use both the absolute positions provided by the RTLS [15] and the
calibrated (absolute) orientations from the Samsung GearVR (official
Occulus orientation estimates) to render the pose, and thus the esti-
mated camera viewpoint for the participant. While the orientation
stream constantly delivers close to 60 orientations per second, the po-
sition stream only provides 20 updates per second. As we render the
virtual world at a quasi-constant rate of 60 Hz, the orientation update
frequency suffices [10, 76]. But the low update frequency of the posi-
tions (to render the VR view) introduces a varying motion-to-photon
delay (MTP) of 246.34 ms on avg. (N = 87, min. 198.7 ms, max. 319.6
ms, SD 76.4 ms). We assessed MTP as the latency between physical
translational (head) movement and the according visual feedback (dis-
play) [19,42]. Whereas the rendering frame rate/frequency describes
the simulation/display refresh rate, the MTP describes the latency (de-
lay) of the position updates. We measured the positional MTP by frame
counting [19]. Therefore, we simultaneously recorded sensor move-
ments and the resulting screen response in repeated measures with a
high-speed camera (1000 Hz) and then assessed the number of frames
between physical motion apexes and the corresponding screen response

(a) HMD and position sensor. (b) Shoe with the inertial sensor.

Fig. 3. (a) Samsung GearVR HMD (provides relative head orientation)
and RedFIR position sensor (in the circle, provides absolute head posi-
tion); (b) eGait system (in the circle, Shimmer Inertial-Navigation-Sensor
(INS) that delivers gait information).

(a) Side-view of the real environment. (b) Side-view of the virtual environment. (c) User-perspective of the virtual environment.

Fig. 4. Real and virtual environment of our experiments. Paths on which users (W)alk, (B)alance, (R)un, and perform a (S)lalom walk.

(note: the HMD renders at 60 Hz, hence the screen response varies,
SD 16.6 ms). The RTLS yields a precision error of < 2.6 cm. The
Kalman filter (KF) that is used in the positioning system suffers from
sudden movement changes which result in over- and undershooting of
the estimated trajectory. Hence, the mapping between real and virtual
motion is incorrect, which facilitates simulator sickness. Thus, our
simple model does move while standing still. This jitter is noticeable
when standing still (subjective judgment), i.e., while moving it feels a
bit like being held.

3.1.2 Optimized Pose Estimation Model Mo

Our optimized model Mo uses the same orientations and positions as
Ms. But this time, we use the absolute positions in combination with the
head orientations (provided by the Samsung GearVR) to calculate con-
trol points of a Kochanek-Bartels-Spline with parameters T ension=1,
Bias=-1, and Continuity=0 [34]. This yields a precision error of unno-
ticeable < 0.01 mm. Thus, our optimized model does not move while
standing still.

Technically, the magnitude (velocity) of the spline’s tangent repre-
sents the motion displacement, which we determine based on distances
of consecutive absolute positions. As the KF of the tracking system [15]
is parameterized to yield responsive but inaccurate and varying posi-
tions, we smooth the position with a head motion state (square root
magnitude of the accelerometer and gyroscope sensors from the HMD).
By correctly classifying the current motion state of a user’s head we
cap over- and undershooting of position changes. We exploit the fact
that humans tend to move towards their viewing direction more fre-
quently [9, 10]. Hence, we extrapolate the future control points (that
steer the tangents and thus the view of the HMD) based on the orienta-
tion of the position vector (provided by the last positions by about 25%)
and the absolute yaw head orientation (by about 75%). Thus, we can
extrapolate the future position. Since we know that humans either tend
to adapt to insignificant motion errors [59] or tolerate yaw orientation
offsets below 20° while walking [10], our algorithm can make small
mistakes. The high-rated motion state and its local processing on the
HMD thus yields an accurate mapping of human senses and a smaller
and constant MTP delay of 116.3 ms on avg. (N = 91, min. 98.5 ms,
max. 148.3 ms, SD 18.7 ms), see Fig. 5.

For Mo, the tcb-spline enables the camera to move on fast cornering
rides, i.g., when users turn abruptly, the tcb-spline can directly switch
the direction. Moreover, t-clipping helps to avoid damping or overshoot-
ing and reduces the number of mispredictions. The combination of a
weighted motion state classification and view-direction-based weighted
extrapolation (to dip the movement along the tangent per delta time)
yields a responsive, more natural pose estimation model. Finally, by
adjusting the weights, i.e., adding/subtracting to/from each fragment
per frame, we can unnoticeably compensate for accumulating errors.

3.1.3 Rendering

We always render the simulation at a fixed frame rate of 60 Hz (loss
rate < 0.1 Hz). We update the camera position at 20 Hz (RTLS raw
positions) for Ms. For Mo, we extrapolate in-between at 60 Hz (a
Kalman filter fuses IMU data at 100 Hz and RTLS raw positions at

20 Hz) with the tcb-spline. In both models, we always update the
camera orientation at 60 Hz (calibrated GearVR orientation estimates).
Note, the camera position and orientation are updated independently
according to the pipeline in Fig. 5.

3.1.4 Pretest

In a preliminary experiment, we evaluated the configuration parameters
of Ms and Mo and determined user perception. The pretest revealed
that subjects (N = 46, 24 male, 22 female, Mage = 25.03) felt (based
on self-reported measures) less sick, more natural, more comfortable,
and more involved when we render the virtual view with Mo. We thus
employed these models for the main study.

3.2 Motion Tasks

We designed the tasks according to the related findings [16, 35, 50, 51].
According to [35, 50, 51] sickness is not only a function of motion-
to-photon latency or inaccurate mapping of human senses, but also
depends on the task. The more complex the task is and the longer it
takes, the more sickness it causes. The tasks reflect what we believe is
typical for large-scale VR simulations [62]. We gave instructions orally
based on an experimenter protocol.

Walking (W). We asked the participants to naturally walk forward
three times on a 15 m long straight path while we recorded their gait.
For the baseline task TMb , we asked the participants to walk at a natu-
ral speed with either free or rigid head orientation. We introduced
secondary-level objectives to account for a controlled exposure and
focus in the VR assessments. In the first iteration of the VR assessments
TMs and TMo , we asked participants to walk at a natural speed with
non-rigid head orientation. In the second iteration, we encourage the
participants to focus on far-away objects (green or yellow cubes) or
near objects (e.g., the floor) while they walked along the path W . In the
third iteration, we asked them to look to the left or right and to focus on
far-away objects (red or blue cubes) or near objects (e.g., gray pylons).

Balancing (B). We asked the users to balance three times (as pre-
cisely as they can, i.e., with as few sidesteps as possible) naturally on a
15 m long and 10 cm wide virtual plank, see Fig. 4(c).

Running (R). We asked the participants to run three times (as fast
as they can) naturally along the 15 m long path with free head orien-
tation. We asked the participants to only stop running after leaving
the measurement area (hence, in total they ran about 20 m but we also
recorded the gait for 15 m). For the tasks TMs and TMo we encouraged
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the participants to specifically focus on the moment when they stopped
running, i.e., when most likely artifacts occur due to Ms and Mo.

Slalom (S). Since in a preliminary study we found that walking a
slalom disturbs gait behavior and measurements (such as sidesteps,
missteps, and strafing), we did not record the gait during the slalom
walk. On the other hand, as slalom is typical in sports applications,
its impact on simulator sickness is relevant. Hence, we asked the
participants to walk once on a slalom path S for the virtual tasks TMs

and TMo , see Fig. 4(b), with quasi-free head orientations.

3.3 Procedure

Fig. 6 holds a detailed overview of the study procedure. The complete
experiment lasted for about 45 minutes. After greeting the participants
we presented the study information before they agreed to participate.
We then assessed demographics with a pre-study questionnaire, fol-
lowed by the baseline assessment TMb with the motion tasks Walk (W ),
Balance (B), and Run (R). After assessing a visual test, the participant
continued with the motion tasks while either being exposed to Ms or
to Mo, followed by the assessment of the respective other model. The
first model after the baseline was varied and balanced throughout the
sample. Again, we asked participants to perform W , B, and R three
times. We also asked them to walk a slalom path (S) in TMo and TMs .
After TMb , TMs , and TMo , we assessed simulator sickness. In TMs and
TMo , after W and R, we additionally assessed presence (see Sec. 3.4.1).
We asked the participants to stand still immediately before and after W ,
B, and R, to start and stop the gait recording with a clean alignment.
We recorded the gait information of both feet for each motion task in
each of the three assessments. On average, participants spent 10.71
minutes in Ms and 11.79 minutes in Mo to fulfill the tasks.

3.4 Measures

3.4.1 Control Measures

We asked the subjects to gauge their sensitivity to sickness (e.g., on a
car, a boat, an amusement ride, or a plane) on a 0-10 scale.

To ensure the best possible virtual view (direction, sharpness, and
brightness) for all participants, we carried out a visual test (both in
reality and in the VR) before assigning tasks. The VR visual test
mimicked the usual visual tests known from reality (users determined
the alignment of apertures of circles of varying size) [40]. The users
performed the visual tests first without the HMD and then with the
HMD. To successfully pass the virtual visual tests, users had to identify
all visual tasks clearly. Therefore, they had to take their time to adjust
the HMD device perfectly. All users had a normal or corrected-to-
normal vision (i.e., contact lenses or glasses) and passed both visual
tests.
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Fig. 6. Study procedure.

3.4.2 Subjective Measures
After each assessment (TMb , TMs , TMo ) we measured the simulator
sickness using the SSQ questionnaire [29] and analyzed the factors
Nausea, Oculomotor, Disorientation, and Total score. All subjects had
to indicate their current state on a 0-3 scale. In addition, we assessed
the perceived presence after W and R in both TMs and TMo , using the
revised PQ questionnaire from [61, 87, 88]. Subjects had to indicate
their perception on a 1-7 scale. We assessed these presence measures to
investigate the robustness of the construct and its influence across the
tasks. Because of the complexity of the experiment, we only assessed
presence after the exposure to W and R since subjects had a hard time
focusing on B and S and thus were unable to also provide self-reports
on presence.

3.4.3 Gait Parameter Extraction
We used typical spatio-temporal gait parameters from the literature [48,
52] that are known to show relationships between different movement
behaviors, see Table 1. Hence, we expected these parameters to show
(i) a close relation between the baseline model Mb and the optimized
model Mo, and (ii) to show a clear divergence between Mb and the
simple/unnatural model Ms and – according to H2 – to show a clear
divergence between Mo and Ms.

We extracted the data from the IMU recordings, i.e., 3 DoF accele-
ration axyz and 3 DoF gyroscope gxyz signal streams. The extraction
worked as follows. In the recorded streams (axyz, gxyz) we detected and
identified the footsteps at times t. To do so, we found the moments
when a foot touches the ground (stance event) by detecting the peaks
P in the sum of the square root magnitude of the sensor data: steps(t)

=
√

a2
x(t)+a2

y(t)+a2
z (t) +

√
g2

x(t)+g2
y(t)+g2

z (t). This way of step detection is
invariant of the placement and the orientation of the sensor. We used
a threshold ≥ 13.0 that we determined in a preliminary study. With a
step found in the sensor data, we selected a window around its peak
that holds all information belonging to this step. In this window of raw
sensor data, we determined the gait parameters of the step according
to [63].

3.5 Participants
We recruited 34 participants (8 female, Mage = 27.4, SDage = 4.98)
using a mailing list and recruiting system of our institution. All were
blind to the goal of the experiment. All had normal or corrected to
normal vision. Thirteen wore contact lenses or glasses. None had any
motoric impairments. 26 participants had previous experience with VR
environments; of those, 12 indicated they had less than three previous
VR experiences and 14 indicated they had more than three previous
experiences. Most of the pre-experiences were with Oculus Rift, HTC
Vive, and Samsung GearVR headsets. 22 participants indicated that
they do sports regularly. 24 participants indicated that they played
video games, 17 on a daily basis. We had to exclude gait data of 9
participants due to corrupt data (the Bluetooth connection between the
Shimmer sensors was disturbed for a full day). Hence, we extracted

Table 1. Gait parameters.

Type [unit] Description

Heel strike angle [deg] Angle between heel and ground, when a heel
touches the ground (during movement)

Toe out angle [deg] Angle between mid heel to 2nd toe (long foot axis)
Gait velocity [m/s] Stride length divided by stride time
Max. lateral excursion [cm] Max. foot movement to the right/left side
Max. toe clearance [cm] Max. distance between toe and ground, when the

foot swings in the air (forward movement)
Stance time [%] Percentage of the time when a foot is on the floor

(not on the floor)
Stance time [s] Time when a foot is on the floor
Stride length [cm] Sum of two consecutive step lengths
Stride time [s] Time of a full gait cycle
Swing time [%] Percentage of the time when a foot is in the air
Swing time [s] Time when a foot is in the air
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Fig. 7. Mean values of the sickness measure [29] for the subscores and
the total score. Error bars denote the standard error.

valid gait parameters from 25 participants (5 female, Mage = 26.96,
SDage = 4.58). Of those, 12 wore contact lenses or glasses, and 21 had
previous experience with VR.

4 RESULTS

4.1 Simulator Sickness

To be comparable to other published results, the sickness scores, in-
cluding the sum of the related items, were calculated and weighted
according to the procedure and recommendations by Kennedy et al. [29].
The total score is the sum of the unweighted subscores, multiplied by
3.74 (conversion formula), see Fig. 7 for the results. To compare the
sickness scores between each condition, we first conducted a Fried-
man two-way analysis of variance by ranks for related samples with
a follow-up pairwise comparison (Dunn test for non-parametric pair-
wise comparisons). We chose a Friedman test as we considered the
4-point scale of the SSQ (ranging from “none” to “severe”, ordinal
categories in a logical order [11]) and the pre-exposure measurements
to typically have little variance. We also report parametric ANOVAs
and pairwise t-tests to support the results. Pairwise comparisons were
performed with a Bonferroni correction for multiple comparisons. Sta-
tistical significance was accepted at the p<.0167 level. Adjusted values
are reported.

The Total sickness score was significantly different for the non-
parametric comparison of Mb, Mo, and Ms, χ2(2)=63.75, p<.001.
Non-parametric pairwise comparisons showed that the total sick-
ness was statistically significantly different between Mb (Mdn=0.0)
and Ms (Mdn=61.71, pad j<.001), between Mb and Mo (Mdn=11.22,
pad j=.005) and between Ms and Mo (pad j<.001). The parametric
ANOVA confirmed these results, F(1.075,35.474)=147.68, p<.001,
η2

p=.817. All pairwise t-tests confirmed statistically significant differ-
ences (p′s<.001). An exploratory parametric analysis of covariance
(ANCOVA) calculated by using trait sickness and gender as covari-
ates showed that neither trait sickness (i.e., the subjective pre-assessed
sensitivity of each participant) nor gender significantly affected these
results.

Assessed by non-parametric testing, the Nausea score was statis-
tically significantly different for the assessments of Mb, Mo, and Ms,
χ2(2)=63.25, p<.001. Pairwise non-parametric comparisons showed
that nausea scores were statistically significantly different between
Mb (Mdn=0.0) and Ms (Mdn=28.62, pad j<.001), between Ms and
Mo (Mdn=0.0, pad j<.001), but not between Mb and Mo (pad j=.345).
Assessed by non-parametric testing, the Disorientation score was sta-
tistically significantly different for the assessments of Mb, Mo, and Ms,
χ2(2)=64.19, p<.001. Pairwise non-parametric comparisons showed
that disorientation scores were statistically significantly different be-
tween Mb (Mdn=0.0) and Ms (Mdn=97.44, pad j<.001), between Ms
and Mo (Mdn=13.92, pad j<.001) and between Mband Mo (pad j=.011).
Assessed by non-parametric testing, the Oculomotor score was statis-
tically significantly different for the assessments of Mb, Mo, and Ms,
χ2(2)=62.54, p<.001. Pairwise non-parametric comparisons showed
that oculomotor scores were statistically significantly different between
Mb (Mdn=0.0) and Ms (Mdn=56.85, pad j<.001), between Ms and Mo
(pad j<.001), but not between Mb and Mo (Mdn=7.58, pad j=.033).

Results of the parametric ANVOAs and consecutive pairwise com-
parisons (t-tests) for nausea, disorientation, and oculomotor scores
corroborated with the non-parametric results.

4.1.1 Reliabilities
A reliability analysis of the SSQ measure revealed that multiple items
had zero variance and that only the Oculomotor sub-scale yielded a re-
liable measure across all models, see Table 2. Items with zero variance
are salivation, sweating, nausea, stomach, burping, and dizziness (open
eyes) in the Mb assessment; burping in the Ms assessment; salvation,
sweating, and burping in the Mo assessment. Typically, we exclude
items from the analysis to increase the reliability of a construct. Here,
excluding items did not yield a significant improvement in the overall
reliability.

In summary, supporting H1, the optimized pose estimation model Mo
successfully decreased simulator sickness, see Fig. 7. The baseline Mb
seemed to have created the least or almost no sickness, the optimized
model Mo resulted in negligible sickness, while the simple model Ms
caused much sickness.

4.2 Presence
Normality was violated for some measures of presence as assessed by
a Shapiro-Wilk test. We therefore conducted Wilcoxon signed-rank
tests for the presence measures comparing the simple model Ms and the
optimized model Mo for the assessment after the tasks W and R. Fig. 9
holds the presence results.

In the walking task W , all 34 participants perceived a higher total
presence with Mo, than with Ms. The distribution of the differences
was symmetrical. Mo elicited a statistically significant median increase
in total presence compared to Ms, z=5.090, p<.001. Similarly, Mo
elicited a statistically significant median increase in total presence
compared to Ms, z=5.094, p<.001, in the running task. In addition,
participants perceived significantly higher presence with Mo than with
Ms, with regard to all subscores (ps<.001) in both tasks. Similar to
the sickness assessment, the reliabilities of the presence factors were
low. For example, the total score reliabilities ranged from α=.241 to
α=.476.

Supporting H3, the optimized model Mo resulted in a higher per-
ception of presence in simulations with identical content but modified
visuomotor coherence. In consequence, the data supports the assumed
relation between presence and the realism of the simulation response
to motoric actions [69].

4.3 Gait Parameters
We were interested in the comparison and separation of the pose estima-
tion models (H2), their relation to the baseline measure, as well as their
manifestation throughout the different motion tasks. Fig. 8 visualizes
interpretable gait parameter measurements.

Assessed by a Shapiro-Wilk test, 21 out of 99 variable data were not
normally distributed. As simulations showed that ANOVA is relatively
robust to violations of the normality assumption [84, 85] and under the
circumstance that the majority of the data was normally distributed, we
conducted 3x3 repeated measures ANOVAs with the model (Mb, Mo,
Ms) and the task (W , B, R) serving as factors. When sphericity was
violated, we applied Greenhouse-Geißer corrections.

Table 3 summarizes the test results. Except for the interaction effect
of Model X Task for the Max. Toe Clearance parameter, all tests re-
vealed significant effects (ps < .001). The main effects for the factor
model show that all assessed parameters have been significantly af-
fected by the different models. As Fig. 8 depicts, there were especially
strong differences between both pose estimation models Ms and Mo,
which supports that gait is affected by the pose estimation models (H2).
Exploratory pairwise comparisons (Bonferroni adjusted) revealed that

Table 2. Cronbach’s α reliability results of the SSQ assessments.

N O D Total

Baseline Mb -.086 *# .725 .666 # .833 #
Simple Model Ms .780 # .648 .817 .863 #
Optimized Model Mo .494 # .677 .443 .738 #
Note. * indicates a violation of reliability assumption.
# indicates that items were excluded because of zero variance.
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the participants to specifically focus on the moment when they stopped
running, i.e., when most likely artifacts occur due to Ms and Mo.

Slalom (S). Since in a preliminary study we found that walking a
slalom disturbs gait behavior and measurements (such as sidesteps,
missteps, and strafing), we did not record the gait during the slalom
walk. On the other hand, as slalom is typical in sports applications,
its impact on simulator sickness is relevant. Hence, we asked the
participants to walk once on a slalom path S for the virtual tasks TMs

and TMo , see Fig. 4(b), with quasi-free head orientations.

3.3 Procedure

Fig. 6 holds a detailed overview of the study procedure. The complete
experiment lasted for about 45 minutes. After greeting the participants
we presented the study information before they agreed to participate.
We then assessed demographics with a pre-study questionnaire, fol-
lowed by the baseline assessment TMb with the motion tasks Walk (W ),
Balance (B), and Run (R). After assessing a visual test, the participant
continued with the motion tasks while either being exposed to Ms or
to Mo, followed by the assessment of the respective other model. The
first model after the baseline was varied and balanced throughout the
sample. Again, we asked participants to perform W , B, and R three
times. We also asked them to walk a slalom path (S) in TMo and TMs .
After TMb , TMs , and TMo , we assessed simulator sickness. In TMs and
TMo , after W and R, we additionally assessed presence (see Sec. 3.4.1).
We asked the participants to stand still immediately before and after W ,
B, and R, to start and stop the gait recording with a clean alignment.
We recorded the gait information of both feet for each motion task in
each of the three assessments. On average, participants spent 10.71
minutes in Ms and 11.79 minutes in Mo to fulfill the tasks.

3.4 Measures

3.4.1 Control Measures

We asked the subjects to gauge their sensitivity to sickness (e.g., on a
car, a boat, an amusement ride, or a plane) on a 0-10 scale.

To ensure the best possible virtual view (direction, sharpness, and
brightness) for all participants, we carried out a visual test (both in
reality and in the VR) before assigning tasks. The VR visual test
mimicked the usual visual tests known from reality (users determined
the alignment of apertures of circles of varying size) [40]. The users
performed the visual tests first without the HMD and then with the
HMD. To successfully pass the virtual visual tests, users had to identify
all visual tasks clearly. Therefore, they had to take their time to adjust
the HMD device perfectly. All users had a normal or corrected-to-
normal vision (i.e., contact lenses or glasses) and passed both visual
tests.
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Fig. 6. Study procedure.

3.4.2 Subjective Measures
After each assessment (TMb , TMs , TMo ) we measured the simulator
sickness using the SSQ questionnaire [29] and analyzed the factors
Nausea, Oculomotor, Disorientation, and Total score. All subjects had
to indicate their current state on a 0-3 scale. In addition, we assessed
the perceived presence after W and R in both TMs and TMo , using the
revised PQ questionnaire from [61, 87, 88]. Subjects had to indicate
their perception on a 1-7 scale. We assessed these presence measures to
investigate the robustness of the construct and its influence across the
tasks. Because of the complexity of the experiment, we only assessed
presence after the exposure to W and R since subjects had a hard time
focusing on B and S and thus were unable to also provide self-reports
on presence.

3.4.3 Gait Parameter Extraction
We used typical spatio-temporal gait parameters from the literature [48,
52] that are known to show relationships between different movement
behaviors, see Table 1. Hence, we expected these parameters to show
(i) a close relation between the baseline model Mb and the optimized
model Mo, and (ii) to show a clear divergence between Mb and the
simple/unnatural model Ms and – according to H2 – to show a clear
divergence between Mo and Ms.

We extracted the data from the IMU recordings, i.e., 3 DoF accele-
ration axyz and 3 DoF gyroscope gxyz signal streams. The extraction
worked as follows. In the recorded streams (axyz, gxyz) we detected and
identified the footsteps at times t. To do so, we found the moments
when a foot touches the ground (stance event) by detecting the peaks
P in the sum of the square root magnitude of the sensor data: steps(t)

=
√

a2
x(t)+a2

y(t)+a2
z (t) +

√
g2

x(t)+g2
y(t)+g2

z (t). This way of step detection is
invariant of the placement and the orientation of the sensor. We used
a threshold ≥ 13.0 that we determined in a preliminary study. With a
step found in the sensor data, we selected a window around its peak
that holds all information belonging to this step. In this window of raw
sensor data, we determined the gait parameters of the step according
to [63].

3.5 Participants
We recruited 34 participants (8 female, Mage = 27.4, SDage = 4.98)
using a mailing list and recruiting system of our institution. All were
blind to the goal of the experiment. All had normal or corrected to
normal vision. Thirteen wore contact lenses or glasses. None had any
motoric impairments. 26 participants had previous experience with VR
environments; of those, 12 indicated they had less than three previous
VR experiences and 14 indicated they had more than three previous
experiences. Most of the pre-experiences were with Oculus Rift, HTC
Vive, and Samsung GearVR headsets. 22 participants indicated that
they do sports regularly. 24 participants indicated that they played
video games, 17 on a daily basis. We had to exclude gait data of 9
participants due to corrupt data (the Bluetooth connection between the
Shimmer sensors was disturbed for a full day). Hence, we extracted

Table 1. Gait parameters.

Type [unit] Description

Heel strike angle [deg] Angle between heel and ground, when a heel
touches the ground (during movement)

Toe out angle [deg] Angle between mid heel to 2nd toe (long foot axis)
Gait velocity [m/s] Stride length divided by stride time
Max. lateral excursion [cm] Max. foot movement to the right/left side
Max. toe clearance [cm] Max. distance between toe and ground, when the

foot swings in the air (forward movement)
Stance time [%] Percentage of the time when a foot is on the floor

(not on the floor)
Stance time [s] Time when a foot is on the floor
Stride length [cm] Sum of two consecutive step lengths
Stride time [s] Time of a full gait cycle
Swing time [%] Percentage of the time when a foot is in the air
Swing time [s] Time when a foot is in the air
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Fig. 7. Mean values of the sickness measure [29] for the subscores and
the total score. Error bars denote the standard error.

valid gait parameters from 25 participants (5 female, Mage = 26.96,
SDage = 4.58). Of those, 12 wore contact lenses or glasses, and 21 had
previous experience with VR.

4 RESULTS

4.1 Simulator Sickness

To be comparable to other published results, the sickness scores, in-
cluding the sum of the related items, were calculated and weighted
according to the procedure and recommendations by Kennedy et al. [29].
The total score is the sum of the unweighted subscores, multiplied by
3.74 (conversion formula), see Fig. 7 for the results. To compare the
sickness scores between each condition, we first conducted a Fried-
man two-way analysis of variance by ranks for related samples with
a follow-up pairwise comparison (Dunn test for non-parametric pair-
wise comparisons). We chose a Friedman test as we considered the
4-point scale of the SSQ (ranging from “none” to “severe”, ordinal
categories in a logical order [11]) and the pre-exposure measurements
to typically have little variance. We also report parametric ANOVAs
and pairwise t-tests to support the results. Pairwise comparisons were
performed with a Bonferroni correction for multiple comparisons. Sta-
tistical significance was accepted at the p<.0167 level. Adjusted values
are reported.

The Total sickness score was significantly different for the non-
parametric comparison of Mb, Mo, and Ms, χ2(2)=63.75, p<.001.
Non-parametric pairwise comparisons showed that the total sick-
ness was statistically significantly different between Mb (Mdn=0.0)
and Ms (Mdn=61.71, pad j<.001), between Mb and Mo (Mdn=11.22,
pad j=.005) and between Ms and Mo (pad j<.001). The parametric
ANOVA confirmed these results, F(1.075,35.474)=147.68, p<.001,
η2

p=.817. All pairwise t-tests confirmed statistically significant differ-
ences (p′s<.001). An exploratory parametric analysis of covariance
(ANCOVA) calculated by using trait sickness and gender as covari-
ates showed that neither trait sickness (i.e., the subjective pre-assessed
sensitivity of each participant) nor gender significantly affected these
results.

Assessed by non-parametric testing, the Nausea score was statis-
tically significantly different for the assessments of Mb, Mo, and Ms,
χ2(2)=63.25, p<.001. Pairwise non-parametric comparisons showed
that nausea scores were statistically significantly different between
Mb (Mdn=0.0) and Ms (Mdn=28.62, pad j<.001), between Ms and
Mo (Mdn=0.0, pad j<.001), but not between Mb and Mo (pad j=.345).
Assessed by non-parametric testing, the Disorientation score was sta-
tistically significantly different for the assessments of Mb, Mo, and Ms,
χ2(2)=64.19, p<.001. Pairwise non-parametric comparisons showed
that disorientation scores were statistically significantly different be-
tween Mb (Mdn=0.0) and Ms (Mdn=97.44, pad j<.001), between Ms
and Mo (Mdn=13.92, pad j<.001) and between Mband Mo (pad j=.011).
Assessed by non-parametric testing, the Oculomotor score was statis-
tically significantly different for the assessments of Mb, Mo, and Ms,
χ2(2)=62.54, p<.001. Pairwise non-parametric comparisons showed
that oculomotor scores were statistically significantly different between
Mb (Mdn=0.0) and Ms (Mdn=56.85, pad j<.001), between Ms and Mo
(pad j<.001), but not between Mb and Mo (Mdn=7.58, pad j=.033).

Results of the parametric ANVOAs and consecutive pairwise com-
parisons (t-tests) for nausea, disorientation, and oculomotor scores
corroborated with the non-parametric results.

4.1.1 Reliabilities
A reliability analysis of the SSQ measure revealed that multiple items
had zero variance and that only the Oculomotor sub-scale yielded a re-
liable measure across all models, see Table 2. Items with zero variance
are salivation, sweating, nausea, stomach, burping, and dizziness (open
eyes) in the Mb assessment; burping in the Ms assessment; salvation,
sweating, and burping in the Mo assessment. Typically, we exclude
items from the analysis to increase the reliability of a construct. Here,
excluding items did not yield a significant improvement in the overall
reliability.

In summary, supporting H1, the optimized pose estimation model Mo
successfully decreased simulator sickness, see Fig. 7. The baseline Mb
seemed to have created the least or almost no sickness, the optimized
model Mo resulted in negligible sickness, while the simple model Ms
caused much sickness.

4.2 Presence
Normality was violated for some measures of presence as assessed by
a Shapiro-Wilk test. We therefore conducted Wilcoxon signed-rank
tests for the presence measures comparing the simple model Ms and the
optimized model Mo for the assessment after the tasks W and R. Fig. 9
holds the presence results.

In the walking task W , all 34 participants perceived a higher total
presence with Mo, than with Ms. The distribution of the differences
was symmetrical. Mo elicited a statistically significant median increase
in total presence compared to Ms, z=5.090, p<.001. Similarly, Mo
elicited a statistically significant median increase in total presence
compared to Ms, z=5.094, p<.001, in the running task. In addition,
participants perceived significantly higher presence with Mo than with
Ms, with regard to all subscores (ps<.001) in both tasks. Similar to
the sickness assessment, the reliabilities of the presence factors were
low. For example, the total score reliabilities ranged from α=.241 to
α=.476.

Supporting H3, the optimized model Mo resulted in a higher per-
ception of presence in simulations with identical content but modified
visuomotor coherence. In consequence, the data supports the assumed
relation between presence and the realism of the simulation response
to motoric actions [69].

4.3 Gait Parameters
We were interested in the comparison and separation of the pose estima-
tion models (H2), their relation to the baseline measure, as well as their
manifestation throughout the different motion tasks. Fig. 8 visualizes
interpretable gait parameter measurements.

Assessed by a Shapiro-Wilk test, 21 out of 99 variable data were not
normally distributed. As simulations showed that ANOVA is relatively
robust to violations of the normality assumption [84, 85] and under the
circumstance that the majority of the data was normally distributed, we
conducted 3x3 repeated measures ANOVAs with the model (Mb, Mo,
Ms) and the task (W , B, R) serving as factors. When sphericity was
violated, we applied Greenhouse-Geißer corrections.

Table 3 summarizes the test results. Except for the interaction effect
of Model X Task for the Max. Toe Clearance parameter, all tests re-
vealed significant effects (ps < .001). The main effects for the factor
model show that all assessed parameters have been significantly af-
fected by the different models. As Fig. 8 depicts, there were especially
strong differences between both pose estimation models Ms and Mo,
which supports that gait is affected by the pose estimation models (H2).
Exploratory pairwise comparisons (Bonferroni adjusted) revealed that

Table 2. Cronbach’s α reliability results of the SSQ assessments.

N O D Total

Baseline Mb -.086 *# .725 .666 # .833 #
Simple Model Ms .780 # .648 .817 .863 #
Optimized Model Mo .494 # .677 .443 .738 #
Note. * indicates a violation of reliability assumption.
# indicates that items were excluded because of zero variance.
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Fig. 8. Mean values of all gait parameters for the 3 models (baseline Mb, simple model Ms, optimized model Mo) and the 3 movement types (Walking,
Balancing, and Running). Error bars indicate 95% confidence intervals. Movement types are ordered from slowest to fastest.

Table 3. Univariate Main and Interaction Effects.
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Table 7: Univariate Main and Interaction Effects.

Parameter Model X Task Model Task
F d f Error p h2

p F d f Error p h2
p F d f Error p h2

p

Heel Strike Angle [deg] 385.96 2.61 62.66 *** .941 19.10 2.00 48.00 *** .443 1829.55 1.57 37.65 *** .987
Max Toe Out Angle [deg] 12.37 1.96 47.03 *** .340 315.19 2.00 48.00 *** .929 210.77 1.40 33.63 *** .898
Gait Velocity [m/s] 101.16 2.25 54.01 *** .808 703.51 2.00 48.00 *** .967 4860.70 1.59 38.07 *** .995
Max Lateral Excursion [cm] 265.00 4.00 96.00 *** .917 190.54 2.00 48.00 *** .888 235.49 2.00 48.00 *** .908
Toe Clearance [cm] n.s. 411.98 2.00 48.00 *** .945 41.17 2.00 48.00 *** .643
Stance Time [%] 783.59 2.62 62.87 *** .970 33.60 2.00 48.00 *** .583 795.83 1.50 35.97 *** .971
Stance Time [s] 752.20 2.27 54.41 *** .969 28.45 1.58 37.82 *** .542 9914.76 1.95 46.78 *** .998
Stride Length [cm] 30.92 4.00 96.00 *** .563 633.88 2.00 48.00 *** .964 766.691 2.00 48.00 *** .970
Stride Time [s] 7.67 2.90 96.73 *** .252 474.48 2.00 48.00 *** .952 5929.75 2.00 48.00 *** .996
Swing Time [%] 428.28 2.50 59.91 *** .947 32.66 2.00 48.00 *** .576 474.03 2.00 48.00 *** .952
Swing Time [s] 266.88 2.29 45.91 *** .917 178.34 1.53 36.83 *** .881 266.88 2.29 45.91 *** .997
Note. *** p < .001; n.s. = non significant. Where the sphericity assumption was violated, Greenhouse Geisser corrected values are reported.
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except for the gait velocity, all parameters were significantly different
between Mb and Ms, whereas 5 parameters (Toe Out Angle, Toe Clear-
ance, Stance Time [%], Stance Time [s], and Swing Time [s]) were
significantly different comparing Mb and Mo; ps> .05 (Bonferroni ad-
justed). Overall, the differences between Mb and Mo are much smaller
compared to those between Mb and Ms. The optimized Model Mo still
differs compared to the Mb, yet improved the accuracy compared to
Ms.

Looking at how differences distribute among the three movements,
the results also show that the task (W , B, R) significantly affected each
parameter. Furthermore, the interactions show that even tendencies and
the direction of differences can change throughout the different tasks.
For instance, the Stance Time for Ms was higher for the B and W task,
whereas it was lower in the R task compared to the Mb and Mo, see

s o

Fig. 9. Mean values of the PQ [88] measures for the Walking (W) and
Running (R) assessment. Error bars denote the standard error.

Fig. 8.
A straightforward assessment of sickness through gait parameters

would require a constant tendency of difference. While all parameters
showed significant differences amongst the different models and tasks
and may, therefore, provide useful information for a sickness classifi-
cation, only five parameters (Toe Out Angle, Gait Velocity, Max. Toe
Clearance, Stride Length, and Stride Time) showed a stable difference
tendency between the simple model Ms and both, Mb as well as the Mo
throughout all tasks (W , B, R). We interpret that these parameters are
candidates for sickness indicators by comparing a baseline measure
and a VR exposition measure of gait motion. That partly answers
RQ, as a baseline versus an exposure parameter assessment of the
five aforementioned parameters may provide indications for simulator
sickness.

Yet, one would need to assess the same motion task not to bias the
result. While a quantification of this assessment would need further
systematic studies, we exploratory investigate whether or not there is a
linear correlation of the gait assessment and simulator sickness, which
would then allow for a single assessment measure, i.e., if we can show
that gait parameters and sickness correlate linearly, we could assume
that a single assessment leads to a reliable result.

4.4 Correlations between Gait and the SSQ
The five parameters Toe Out Angle, Gait Velocity, Max. Toe Clear-
ance, Stride Length, and Stride Time showed a stable impact of the
simple model Ms across the tasks Walking, Balancing, and Running
compared to the baseline Mb and Mo, see Fig. 8. Therefore, these pa-
rameters qualify for a potential single assessment measure. We assessed
inter-individual (i.e., within one condition between the participants)
correlations for these parameters between W , B, and R and the SSQ
factors for the simple pose estimation model Ms, which results in the
highest sickness (see Table 4). Multiple small to medium correlations
arise from the analyses. However, there is no clear overall image of

the correlations. Thus, to this point, it seems that we cannot provide
indications for a single assessment measure when taking the SSQ scale
from [29] as a reference.

5 SICKNESS CLASSIFICATION

Whereas only five gait parameters (Toe Out Angle, Gait Velocity, Max.
Toe Clearance, Stride Length, Stride Time, see abbreviations in Table 5)
show a constant and linear relation, all others show very strong interac-
tion effects (see Fig. 8) and hence, their relationship cannot be modeled
linearly. Hence, we demonstrate that non-linear gait parameters can
nevertheless add useful information to enable classification of sickness,
improve robustness to outliers, and result in higher overall confidence.
The underlying assumption is that a larger feature space describes the
problem at hand in more detail and hence forces a data-driven classifier
to accurately and precisely adjust its parameters to provide a better
solution. To find a relationship between a user’s movement, his/her
simulator sickness, and the perceived presence, we state that if we can
train a classifier that maps known gait parameters to a corresponding
total sickness score we can also predict such sickness scores from un-
seen gait parameters, potentially at runtime. Below we first discuss
how we obtain an optimal robust classifier that uses all gait parameters.
Sec. 5.2 then introduces how we intuitively determine binary (not/sick)
and 4-level sickness scores (not/slightly/sick/strongly).

5.1 Non-Linearities
To prove the results from Sec. 4.4 we show that we have to deal with
non-linearity effects in our gait parameters. We first applied an SVM1

(we implement the commonly used library from [7]) with a linear
kernel function [53] to the (linear and non-linear) gait parameters, see
the corresponding column in Table 5. Higher values indicate a better
separability, e.g., TOA is highly linear (87.9%) to its corresponding
sickness level whereas the SWTp is highly non-linear (26.2%). Second,
we applied a solver with a quadratic SVM2 and a cubic SVM3 kernel
function, see respective columns in Table 5. Whenever the SVM2,3

accuracy scores are higher than the SVM1 values our non-linear solvers
find additional (important and non-linear dependency) information
in the gait parameters that are likely to improve the reliability and
robustness of the classification.

5.2 Feature Selection and Classifier Details
Each user provides 11 gait parameters for each of the three movement
types, i.e., 11·3=33 feature values. We use their means (see Table 5)
to create feature vectors, each with a size of 33×1, per model (Ms, Mo,
and Mb) or sickness score. In total, we have 3·33 input features to train
an SVM classifier and to map these features to the corresponding model

Table 4. Pearson correlations between the SSQ dimensions and the
most stable gait parameters for the simple model Ms.

Task Parameter N O D Total

Walking Toe Out Angle .069 .103 -.088 .014
Gait Velocity .077 -.015 -.045 -.002
Max Toe Clearance .296 .486* .388 .422*
Stride Length .088 .369 .118 .197
Stride Time .110 .231 -.035 .085

Balance Toe Out Angle .104 .052 -.032 .034
Gait Velocity -.148 -.183 -.211 -.200
Max Toe Clearance .093 .243 .268 .227
Stride Length .300 .170 .230 .251
Stride Time .146 -.014 .186 .125

Running Toe Out Angle -.037 -.226 -.190 -.169
Gait Velocity -.386 -.341 -.170 -.304
Max Toe Clearance -.113 -.038 .089 -.007
Stride Length .116 -.041 .151 .144
Stride Time -.358 -.474* -.395 -.440*

Note. * indicates a significant correlation at the .05 level (2-tailed).

Table 5. Classification accuracy: separability of Ms from Mb and Mo.

Total Model Accuracy [%]
Features SVM1 SVM2 SVM3

Heel Strike Angle [deg] (HSA) 29.8 89.1 98.2
Max Toe Out Angle [deg] (TOA) 87.9 91.4 96.1
Gait Velocity [m/s] (GV ) 78.1 88.5 99.3
Max Lateral Excursion [cm] (MLE) 63.2 86.5 97.8
Max Toe Clearance [cm] (MTC) 81.4 89.7 98.4
Stance Time [%] (ST1p) 33.1 84.5 98.8
Stance Time [s] (ST1s) 29.8 87.9 99.1
Stride Length [cm] (SL) 85.9 82.6 95.7
Stride Time [s] (ST2s) 81.7 90.5 99.3
Swing Time [%] (SWTp) 26.2 81.5 97.8
Swing Time [s] (SWTs) 57.1 89.6 99.5
* TOA, GV , MTC, SL, ST2s 82.5 91.9 98.9
# HSA, MLE, ST1p, ST1s, SWTp, SWTs 36.8 87.4 96.3
all Gait Parameters (aGP) 79.4 93.9 99.9
Note. * indicates the gait parameters with linear dependencies.
Note. # indicates the gait parameters with non-linear dependencies.

or sickness score. Since we need a multi-class classification we use a
one-vs-all SVM. We define a training set (�x1, �y1), ..., (�xn, �yn) where a
gait parameter �xi is mapped to a model �yi ∈ {Mb,Ms,Mo}.

Our linear solver optimizes a classification problem by adjusting w
(the normal vector to the hyperplane) and b (the bias, i.e., distance to
the origin), so that yi(< w,xi >+b)≥1 describes a distinct hyperplane
with a minimal quadratic norm 1

2 ||w||
2
2 and the largest distance between

the models �yi per gait parameter �xi. The non-linear solvers (SVM2,3)
also optimize the same problem by adjusting w and b, but this time they
also optimize a kernel function K(x,y)=(∑n

i=0 xiyi)
p of degree p, here

p ∈ {2,3}.
We train the classifiers on gait parameters from (randomly selected)

15 subjects and test the classifiers on 10 unseen subjects (left-out) to
avoid overfitting and to demonstrate robustness.

5.3 Results
The SVM2,3 classifiers yield the highest correct classification rate
when all gait parameters are used SVM2=93.9% and SVM3=99.9%,
i.e., by chance of 99 of 100 cases we can correctly classify the correct
underlying model or corresponding total sickness score, even if given
an unseen set of gait parameters. To process the 33 features, the
SVM3 classifier takes 198 µs (per set). Both non-linear classifiers
SVM2,3 outperform the linear SVM1 classifier on every features set, see
Table 5, i.e., the higher accuracy suggests that every parameter contains
important information, even the non-linear ones, so all contribute to an
optimal solution. The Swing Time [%] shows the strongest effect (i.e.,
difference between linear: 26.2%; quadratic: 81.5%; cubic: 97.8%).

5.4 Classifying Sickness Levels
Table 6 shows the results of an SVM3 classifier that maps a feature set
of xi=gait parameters to the yi=simulator sickness score. We tested our
classifier on two different target sets: a binary one (0.0=not sick, and
>0.0=sick) and a multi-level one with 4 sickness levels (not sick: 0.0;
slightly sick: 0.0-0.25; sick: 0.25-0.50; very sick: 0.5-1.0;). We derived
the sickness scale as follows: we normalize the total simulator sickness
scores to [0.0=not sick, 1.0=sick] between the maximal and the minimal
sickness scores of all subjects that occurred within the pose estimation

Table 6. Classification accuracy of various sets of gait parameters on
Binary or 4-Level ranges.

Total Model Accuracy [%]
Features SVM3 to binary SVM3 to 4-levels

all Gait Parameters (aGP) 96.4 85.2
aGP, age 97.1 86.1
aGP, age, height 98.4 86.7
aGP, age, height, VR exp. 99.6 87.3
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Fig. 8. Mean values of all gait parameters for the 3 models (baseline Mb, simple model Ms, optimized model Mo) and the 3 movement types (Walking,
Balancing, and Running). Error bars indicate 95% confidence intervals. Movement types are ordered from slowest to fastest.

Table 3. Univariate Main and Interaction Effects.
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Table 7: Univariate Main and Interaction Effects.

Parameter Model X Task Model Task
F d f Error p h2

p F d f Error p h2
p F d f Error p h2

p

Heel Strike Angle [deg] 385.96 2.61 62.66 *** .941 19.10 2.00 48.00 *** .443 1829.55 1.57 37.65 *** .987
Max Toe Out Angle [deg] 12.37 1.96 47.03 *** .340 315.19 2.00 48.00 *** .929 210.77 1.40 33.63 *** .898
Gait Velocity [m/s] 101.16 2.25 54.01 *** .808 703.51 2.00 48.00 *** .967 4860.70 1.59 38.07 *** .995
Max Lateral Excursion [cm] 265.00 4.00 96.00 *** .917 190.54 2.00 48.00 *** .888 235.49 2.00 48.00 *** .908
Toe Clearance [cm] n.s. 411.98 2.00 48.00 *** .945 41.17 2.00 48.00 *** .643
Stance Time [%] 783.59 2.62 62.87 *** .970 33.60 2.00 48.00 *** .583 795.83 1.50 35.97 *** .971
Stance Time [s] 752.20 2.27 54.41 *** .969 28.45 1.58 37.82 *** .542 9914.76 1.95 46.78 *** .998
Stride Length [cm] 30.92 4.00 96.00 *** .563 633.88 2.00 48.00 *** .964 766.691 2.00 48.00 *** .970
Stride Time [s] 7.67 2.90 96.73 *** .252 474.48 2.00 48.00 *** .952 5929.75 2.00 48.00 *** .996
Swing Time [%] 428.28 2.50 59.91 *** .947 32.66 2.00 48.00 *** .576 474.03 2.00 48.00 *** .952
Swing Time [s] 266.88 2.29 45.91 *** .917 178.34 1.53 36.83 *** .881 266.88 2.29 45.91 *** .997
Note. *** p < .001; n.s. = non significant. Where the sphericity assumption was violated, Greenhouse Geisser corrected values are reported.
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except for the gait velocity, all parameters were significantly different
between Mb and Ms, whereas 5 parameters (Toe Out Angle, Toe Clear-
ance, Stance Time [%], Stance Time [s], and Swing Time [s]) were
significantly different comparing Mb and Mo; ps> .05 (Bonferroni ad-
justed). Overall, the differences between Mb and Mo are much smaller
compared to those between Mb and Ms. The optimized Model Mo still
differs compared to the Mb, yet improved the accuracy compared to
Ms.

Looking at how differences distribute among the three movements,
the results also show that the task (W , B, R) significantly affected each
parameter. Furthermore, the interactions show that even tendencies and
the direction of differences can change throughout the different tasks.
For instance, the Stance Time for Ms was higher for the B and W task,
whereas it was lower in the R task compared to the Mb and Mo, see

s o

Fig. 9. Mean values of the PQ [88] measures for the Walking (W) and
Running (R) assessment. Error bars denote the standard error.

Fig. 8.
A straightforward assessment of sickness through gait parameters

would require a constant tendency of difference. While all parameters
showed significant differences amongst the different models and tasks
and may, therefore, provide useful information for a sickness classifi-
cation, only five parameters (Toe Out Angle, Gait Velocity, Max. Toe
Clearance, Stride Length, and Stride Time) showed a stable difference
tendency between the simple model Ms and both, Mb as well as the Mo
throughout all tasks (W , B, R). We interpret that these parameters are
candidates for sickness indicators by comparing a baseline measure
and a VR exposition measure of gait motion. That partly answers
RQ, as a baseline versus an exposure parameter assessment of the
five aforementioned parameters may provide indications for simulator
sickness.

Yet, one would need to assess the same motion task not to bias the
result. While a quantification of this assessment would need further
systematic studies, we exploratory investigate whether or not there is a
linear correlation of the gait assessment and simulator sickness, which
would then allow for a single assessment measure, i.e., if we can show
that gait parameters and sickness correlate linearly, we could assume
that a single assessment leads to a reliable result.

4.4 Correlations between Gait and the SSQ
The five parameters Toe Out Angle, Gait Velocity, Max. Toe Clear-
ance, Stride Length, and Stride Time showed a stable impact of the
simple model Ms across the tasks Walking, Balancing, and Running
compared to the baseline Mb and Mo, see Fig. 8. Therefore, these pa-
rameters qualify for a potential single assessment measure. We assessed
inter-individual (i.e., within one condition between the participants)
correlations for these parameters between W , B, and R and the SSQ
factors for the simple pose estimation model Ms, which results in the
highest sickness (see Table 4). Multiple small to medium correlations
arise from the analyses. However, there is no clear overall image of

the correlations. Thus, to this point, it seems that we cannot provide
indications for a single assessment measure when taking the SSQ scale
from [29] as a reference.

5 SICKNESS CLASSIFICATION

Whereas only five gait parameters (Toe Out Angle, Gait Velocity, Max.
Toe Clearance, Stride Length, Stride Time, see abbreviations in Table 5)
show a constant and linear relation, all others show very strong interac-
tion effects (see Fig. 8) and hence, their relationship cannot be modeled
linearly. Hence, we demonstrate that non-linear gait parameters can
nevertheless add useful information to enable classification of sickness,
improve robustness to outliers, and result in higher overall confidence.
The underlying assumption is that a larger feature space describes the
problem at hand in more detail and hence forces a data-driven classifier
to accurately and precisely adjust its parameters to provide a better
solution. To find a relationship between a user’s movement, his/her
simulator sickness, and the perceived presence, we state that if we can
train a classifier that maps known gait parameters to a corresponding
total sickness score we can also predict such sickness scores from un-
seen gait parameters, potentially at runtime. Below we first discuss
how we obtain an optimal robust classifier that uses all gait parameters.
Sec. 5.2 then introduces how we intuitively determine binary (not/sick)
and 4-level sickness scores (not/slightly/sick/strongly).

5.1 Non-Linearities
To prove the results from Sec. 4.4 we show that we have to deal with
non-linearity effects in our gait parameters. We first applied an SVM1

(we implement the commonly used library from [7]) with a linear
kernel function [53] to the (linear and non-linear) gait parameters, see
the corresponding column in Table 5. Higher values indicate a better
separability, e.g., TOA is highly linear (87.9%) to its corresponding
sickness level whereas the SWTp is highly non-linear (26.2%). Second,
we applied a solver with a quadratic SVM2 and a cubic SVM3 kernel
function, see respective columns in Table 5. Whenever the SVM2,3

accuracy scores are higher than the SVM1 values our non-linear solvers
find additional (important and non-linear dependency) information
in the gait parameters that are likely to improve the reliability and
robustness of the classification.

5.2 Feature Selection and Classifier Details
Each user provides 11 gait parameters for each of the three movement
types, i.e., 11·3=33 feature values. We use their means (see Table 5)
to create feature vectors, each with a size of 33×1, per model (Ms, Mo,
and Mb) or sickness score. In total, we have 3·33 input features to train
an SVM classifier and to map these features to the corresponding model

Table 4. Pearson correlations between the SSQ dimensions and the
most stable gait parameters for the simple model Ms.

Task Parameter N O D Total

Walking Toe Out Angle .069 .103 -.088 .014
Gait Velocity .077 -.015 -.045 -.002
Max Toe Clearance .296 .486* .388 .422*
Stride Length .088 .369 .118 .197
Stride Time .110 .231 -.035 .085

Balance Toe Out Angle .104 .052 -.032 .034
Gait Velocity -.148 -.183 -.211 -.200
Max Toe Clearance .093 .243 .268 .227
Stride Length .300 .170 .230 .251
Stride Time .146 -.014 .186 .125

Running Toe Out Angle -.037 -.226 -.190 -.169
Gait Velocity -.386 -.341 -.170 -.304
Max Toe Clearance -.113 -.038 .089 -.007
Stride Length .116 -.041 .151 .144
Stride Time -.358 -.474* -.395 -.440*

Note. * indicates a significant correlation at the .05 level (2-tailed).

Table 5. Classification accuracy: separability of Ms from Mb and Mo.

Total Model Accuracy [%]
Features SVM1 SVM2 SVM3

Heel Strike Angle [deg] (HSA) 29.8 89.1 98.2
Max Toe Out Angle [deg] (TOA) 87.9 91.4 96.1
Gait Velocity [m/s] (GV ) 78.1 88.5 99.3
Max Lateral Excursion [cm] (MLE) 63.2 86.5 97.8
Max Toe Clearance [cm] (MTC) 81.4 89.7 98.4
Stance Time [%] (ST1p) 33.1 84.5 98.8
Stance Time [s] (ST1s) 29.8 87.9 99.1
Stride Length [cm] (SL) 85.9 82.6 95.7
Stride Time [s] (ST2s) 81.7 90.5 99.3
Swing Time [%] (SWTp) 26.2 81.5 97.8
Swing Time [s] (SWTs) 57.1 89.6 99.5
* TOA, GV , MTC, SL, ST2s 82.5 91.9 98.9
# HSA, MLE, ST1p, ST1s, SWTp, SWTs 36.8 87.4 96.3
all Gait Parameters (aGP) 79.4 93.9 99.9
Note. * indicates the gait parameters with linear dependencies.
Note. # indicates the gait parameters with non-linear dependencies.

or sickness score. Since we need a multi-class classification we use a
one-vs-all SVM. We define a training set (�x1, �y1), ..., (�xn, �yn) where a
gait parameter �xi is mapped to a model �yi ∈ {Mb,Ms,Mo}.

Our linear solver optimizes a classification problem by adjusting w
(the normal vector to the hyperplane) and b (the bias, i.e., distance to
the origin), so that yi(< w,xi >+b)≥1 describes a distinct hyperplane
with a minimal quadratic norm 1

2 ||w||
2
2 and the largest distance between

the models �yi per gait parameter �xi. The non-linear solvers (SVM2,3)
also optimize the same problem by adjusting w and b, but this time they
also optimize a kernel function K(x,y)=(∑n

i=0 xiyi)
p of degree p, here

p ∈ {2,3}.
We train the classifiers on gait parameters from (randomly selected)

15 subjects and test the classifiers on 10 unseen subjects (left-out) to
avoid overfitting and to demonstrate robustness.

5.3 Results
The SVM2,3 classifiers yield the highest correct classification rate
when all gait parameters are used SVM2=93.9% and SVM3=99.9%,
i.e., by chance of 99 of 100 cases we can correctly classify the correct
underlying model or corresponding total sickness score, even if given
an unseen set of gait parameters. To process the 33 features, the
SVM3 classifier takes 198 µs (per set). Both non-linear classifiers
SVM2,3 outperform the linear SVM1 classifier on every features set, see
Table 5, i.e., the higher accuracy suggests that every parameter contains
important information, even the non-linear ones, so all contribute to an
optimal solution. The Swing Time [%] shows the strongest effect (i.e.,
difference between linear: 26.2%; quadratic: 81.5%; cubic: 97.8%).

5.4 Classifying Sickness Levels
Table 6 shows the results of an SVM3 classifier that maps a feature set
of xi=gait parameters to the yi=simulator sickness score. We tested our
classifier on two different target sets: a binary one (0.0=not sick, and
>0.0=sick) and a multi-level one with 4 sickness levels (not sick: 0.0;
slightly sick: 0.0-0.25; sick: 0.25-0.50; very sick: 0.5-1.0;). We derived
the sickness scale as follows: we normalize the total simulator sickness
scores to [0.0=not sick, 1.0=sick] between the maximal and the minimal
sickness scores of all subjects that occurred within the pose estimation

Table 6. Classification accuracy of various sets of gait parameters on
Binary or 4-Level ranges.

Total Model Accuracy [%]
Features SVM3 to binary SVM3 to 4-levels

all Gait Parameters (aGP) 96.4 85.2
aGP, age 97.1 86.1
aGP, age, height 98.4 86.7
aGP, age, height, VR exp. 99.6 87.3
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models (Mb, Mo, Ms) and movement types (Walking, Balancing, and
Running). The binary sickness scale intuitively indicates sickness if
the total score is >0.0. Respectively, the 4-levels sickness scale also
indicates sickness if the total score is > 0.0. However, we differentiated
the total sickness scores (>0.0) based on self-reported measures, i.e.,
subjects that reported to suffer from negligible sickness symptoms form
one cluster (0.0-0.5) and subjects that reported to suffer from significant
sickness symptoms form another cluster (0.5-1.0). To demonstrate the
accuracy of our classifier we split the 0.0-0.5 cluster into 0.0-0.25 and
0.25-0.50 clusters.

The results in Table 6 show that using more parameters always
yields higher accuracy. The accuracy is even better if we also take
the age, height, and level of previous VR experience in addition to
all gait parameters (aGP) into account. For the binary sickness level,
the resulting classifier almost always (99.6%) correctly determines if a
user suffers from simulator sickness. In 85.2% of the cases, the 4-level
classifier even correctly estimates the degree of simulator sickness.
This demonstrates a direct relation between gait parameters and a
corresponding sickness level.

6 DISCUSSION

In summary, we presented two pose estimation models (Ms and Mo), a
simple model that results in high simulator sickness and an improved
model that results in lower simulator sickness by utilizing a Kochanek-
Bartels-Spline supported motion estimation.

Confirming our hypothesis H1, we showed that simulator sickness of
users as assessed by the SSQ was lower with Mo than with Ms. Despite
the low reliabilities of the instrument, we believe that these results
capture what is rational and in line with previous research [26,27,35,37],
i.e., that the pose estimation model Ms that results in more latency and
a restricted mapping of human senses had the tendency to cause more
simulator sickness. Given the fact, that the SSQ does not drop quickly
between tests (but compounds over time and hence the source of the
sickness in a within-subject design is hard to denote) and thus, a first test
may bias a next one, and given the fact that post-test scores are always
significantly higher than pre-test ones [41], we still found significant
variations in the total scores. In addition, we found that the sickness
increases one-way (i.e., Mo to Ms and Mb to Ms) and stops (i.e., Ms to
Mo), i.e., we exclude two-way as sickness did not increase in both Mo
to Ms and Ms to Mo. However, an elaborate option would be to study
the same participant over the course of consecutive days.

Supporting hypothesis H2, significant differences in the gait param-
eters confirm that different pose estimation models strongly affect the
assessed gait parameters. We interpret this as supporting evidence
for our assumption that simulator sickness is related to the resulting
gait differences. By inspecting the parameters we identified five pa-
rameters, namely Toe Out Angle, Gait Velocity, Max. Toe Clearance,
Stride Length, and Stride Time, that showed stable differences amongst
the tasks (Walking, Balancing, Running within Mb, Ms, and Mo) and
could, therefore, be used in future studies to assess sickness in pre-post
measures. The results of the correlations did not reveal a simple linear
relation, i.e., a single measure of the gait parameters may not clearly
indicate different individual levels of sickness. However, this may be
due to the sample size and the fact that we did not include the repeated
measure assessment in these analyses. To this point, our results confirm
the weaknesses of perceptual measures to assess simulator sickness. In
consequence, we argue that a gait assessment to identify simulator sick-
ness can be useful, as lower reliabilities in the subjective SSQ measures
arise frequently, even in controlled scenarios [89].

Confirming hypothesis H3, perceived presence was higher for the
optimized model Mo compared to the simple model Ms. Thus, a more
accurate mapping of motor behavior and visual feedback, i.e., a better
matching of the human senses and thus a higher immersion, that seems
to hinder simulator sickness, lead to a higher presence perception. Thus,
we provide supporting evidence that inaccurate pose estimation models
hinder the perception of presence. However, we cannot argue that
optimized pose estimation models as such lead to a higher presence,
as the perception of presence is affected by many factors, including
simulation content, self-perception, and narrative [20,39,57]. Again,

the scale reliabilities restrict further conclusions and therefore more
systematic studies (without complex cognitive tasks) using alternative
methods of assessment are needed.

Despite the fact, that cybersickness, simulator sickness, and motion
sickness [75] may differ, our gait parameter results are especially con-
clusive reflecting real-world examples and relating symptoms. That is,
a sensory mismatch leads to a disturbance in gait behavior [79]. For
example, perceiving motion sickness on a ship, sensory disturbances
after a roller coaster ride, or sensory delays under the influence of
alcohol or drugs does strongly affect gait behavior. With regard to a
practical assessment, we thus argue that an assessment of a gait baseline
in comparison to a VR exposure assessment can provide insights when
using the five identified parameters and similar motion tasks which lead
to an objective assessment of sickness, which answers RQ.

Furthermore, we showed that these gait parameters allow to identify
the underlying pose estimation models they originate from. Extending
this approach, we showed that using all assessed (even non-linear) gait
parameters, i.e., more features, leads to a more precise classification.
Beyond that, we showed that multiple gait parameters clearly indicate
different pose estimation models and hence, allow to map gait parame-
ters on one of four corresponding individual levels of sickness. Thus,
if there is the possibility to asses simulator sickness before and after
a walk of a specific user, our method has the potential to act as an
objective sickness measurement tool for this specific user. Although
the accuracy of our classification results is rather optimistic as it only
classifies (separates) two models whose data points are unnaturally
far apart anyway, we think that our data-driven approach may also
yield accurate results even in uncontrolled scenarios with well-defined
walking gait parameters and corresponding pre-post SSQ assessment.
Because of the design of the presented experiment, the causality of the
relation between gait impacts and sickness cannot be explained. We
argue that the resulting sickness effects stand in strong relation to, and
at least to certain degree affect the gait cycle. While one could argue
that the gait cycle is directly affected by the disturbance of sensorimotor
contingencies, we cannot provide insights into the relations on the basis
of our data. However, we think that motion parameters, in our case,
gait parameters, can be used to objectively assess sickness effects, as a
relation is pointed out by our results.

6.1 Limitations

First, our tasks and the design was fairly complex and some measures
were not assessed precisely at the same time, which could have biased
the results. Although we assessed gait parameters only from W , B, R,
the slalom task could have also affected the simulator sickness mea-
sures and may have different results for the gait analysis. However, we
specifically designed this task as a representative task for behavior in
large-scale simulations, e.g., sports applications, rehabilitation appli-
cations, or the visit of a virtual museum [62]. Furthermore, both pose
estimation models had identical task exposures and thus, can still be
reliably compared.

Second, our sample size was relatively small, and hence care should
be taken when generalizing the result. Therefore, future replications
should increase the sample size and validate the model. Obviously, it is
difficult to generalize the current concept to applications not ”walking
in a straight line”. Large-scale VR tracking systems may enable people
to walk freely and allow for more straight-forward movement because
of more space. However, if we find relations of sickness and motion
parameters in a straight-line gait assessment, we may also find similar
parameters in less controlled scenarios and of alternate tracking data
(HMD IMU/position only). Yet, we argue that at the time of the current
research, an exploratory study in an uncontrolled way (free movement,
generic application) would have had too many potentially confusing
variables to consider.

Third, our measures are drawn from a large-scale system (about 45
× 35 m) that fuses IMU data with a large scale RTLS input. Logically,
we cannot generalize the model to room scale or desktop VR [58, 74].
However, larger-scale tracking systems will become available (e.g.,
radio-based [82] or optical systems such as Qualisys).
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Fig. 10. The proposed pipeline for a future method.

7 CONCLUSION

We report novel findings on (1) the impact of simulation character-
istics on gait parameters, simulator sickness, and presence, (2) the
interrelationship of simulator sickness, presence, and gait, and (3) two
approaches, namely a pre-post assessment of gait parameters as well as
a classification approach to assess sickness through gait analysis. We
developed a simple, unnatural pose estimation model that introduces
a varying and higher latency to the simulation and an improved opti-
mized pose estimation model that introduces less latency and includes
a more accurate mapping of human senses. These models allowed us to
conduct a controlled study with known simulation characteristics. Eval-
uating the impacts on gait parameters, simulator sickness, and latency,
we found several notable effects. As hypothesized, the optimized model
successfully decreased sickness and an increased presence. Compared
to a baseline, gait parameters were most significantly impacted by the
simple model. With regard to the proposed model as depicted in Fig. 1,
our results, therefore, show that an unnatural mapping of senses seems
to hinder immersion, leads to higher sickness, and to lower presence.
We contributed a first approach to measurements for simulator sick-
ness, which can either be applied to compare a baseline and exposure
assessment or using our classification method and thus, extend existing
research with important guidelines. Our insights are of great impor-
tance to both VR researchers and developers and will benefit the VR
community, as our simulator sickness real-time measurement will be
useful in future simulator sickness research and their application may
allow dynamic content adaptation in response to a sickness increase.

7.1 Future Work

As we cannot estimate a precise level of sickness based on our results,
we suggest that future work should assess more fine-grained gradations
of simulation characteristics. Assessing multiple points of measure,
and generalizing the model (trained on many users) could lead to a
precise differentiation between levels of simulator sickness. Different
subjective assessments such as trait measures, the History SSQ [28],
individual factors [35], and physiological data may support systematic
evaluations. Furthermore, future work may utilize the presented results
to detect simulator sickness based on either gait parameters, or any
other motion data, such as raw motion data from the users’ head trans-
formation (HMD), see Fig. 10. As we can robustly classify the models
in firm real-time, our results suggest that gait parameters (or motion
parameters in general) can be reliably used to establish a real-time as-
sessment, which would be of great value for all VR applications. Thus,
based on a more fine-grained training set and including individual fac-
tors, the model could then be trained on any motion parameters to allow
for a real-time assessment that generalizes for all users (i.e., users that
are unknown to the model). Moreover, it has been argued that gender
differences in simulator sickness symptoms should be considered (see
Graeber et al. for a review [14]). Yet, findings are diverse [14, 55].
While gender did not significantly affect the results in our study, it
should be considered as a variable in future research. Also, the effects
of rest frames or points of references, e.g., the visualization of the
avatar’s feet, should be considered in respect to simulator sickness. As
the gait parameters are not easily accessible to all VR developers, future
work should consider using raw data of end effectors and a prediction
based on machine learning to assess and classify sickness.
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felder, P. Kugler, D. Schuldhaus, J. Winkler, and J. Klucken. Stride segmen-
tation during free walk movements using multi-dimensional subsequence
dynamic time warping on inertial sensor data. Sensors, 15(3):6419–6440,
2015.

[3] R. J. V. Bertin, C. Collet, S. Espié, and W. Graf. Objective measurement of
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models (Mb, Mo, Ms) and movement types (Walking, Balancing, and
Running). The binary sickness scale intuitively indicates sickness if
the total score is >0.0. Respectively, the 4-levels sickness scale also
indicates sickness if the total score is > 0.0. However, we differentiated
the total sickness scores (>0.0) based on self-reported measures, i.e.,
subjects that reported to suffer from negligible sickness symptoms form
one cluster (0.0-0.5) and subjects that reported to suffer from significant
sickness symptoms form another cluster (0.5-1.0). To demonstrate the
accuracy of our classifier we split the 0.0-0.5 cluster into 0.0-0.25 and
0.25-0.50 clusters.

The results in Table 6 show that using more parameters always
yields higher accuracy. The accuracy is even better if we also take
the age, height, and level of previous VR experience in addition to
all gait parameters (aGP) into account. For the binary sickness level,
the resulting classifier almost always (99.6%) correctly determines if a
user suffers from simulator sickness. In 85.2% of the cases, the 4-level
classifier even correctly estimates the degree of simulator sickness.
This demonstrates a direct relation between gait parameters and a
corresponding sickness level.

6 DISCUSSION

In summary, we presented two pose estimation models (Ms and Mo), a
simple model that results in high simulator sickness and an improved
model that results in lower simulator sickness by utilizing a Kochanek-
Bartels-Spline supported motion estimation.

Confirming our hypothesis H1, we showed that simulator sickness of
users as assessed by the SSQ was lower with Mo than with Ms. Despite
the low reliabilities of the instrument, we believe that these results
capture what is rational and in line with previous research [26,27,35,37],
i.e., that the pose estimation model Ms that results in more latency and
a restricted mapping of human senses had the tendency to cause more
simulator sickness. Given the fact, that the SSQ does not drop quickly
between tests (but compounds over time and hence the source of the
sickness in a within-subject design is hard to denote) and thus, a first test
may bias a next one, and given the fact that post-test scores are always
significantly higher than pre-test ones [41], we still found significant
variations in the total scores. In addition, we found that the sickness
increases one-way (i.e., Mo to Ms and Mb to Ms) and stops (i.e., Ms to
Mo), i.e., we exclude two-way as sickness did not increase in both Mo
to Ms and Ms to Mo. However, an elaborate option would be to study
the same participant over the course of consecutive days.

Supporting hypothesis H2, significant differences in the gait param-
eters confirm that different pose estimation models strongly affect the
assessed gait parameters. We interpret this as supporting evidence
for our assumption that simulator sickness is related to the resulting
gait differences. By inspecting the parameters we identified five pa-
rameters, namely Toe Out Angle, Gait Velocity, Max. Toe Clearance,
Stride Length, and Stride Time, that showed stable differences amongst
the tasks (Walking, Balancing, Running within Mb, Ms, and Mo) and
could, therefore, be used in future studies to assess sickness in pre-post
measures. The results of the correlations did not reveal a simple linear
relation, i.e., a single measure of the gait parameters may not clearly
indicate different individual levels of sickness. However, this may be
due to the sample size and the fact that we did not include the repeated
measure assessment in these analyses. To this point, our results confirm
the weaknesses of perceptual measures to assess simulator sickness. In
consequence, we argue that a gait assessment to identify simulator sick-
ness can be useful, as lower reliabilities in the subjective SSQ measures
arise frequently, even in controlled scenarios [89].

Confirming hypothesis H3, perceived presence was higher for the
optimized model Mo compared to the simple model Ms. Thus, a more
accurate mapping of motor behavior and visual feedback, i.e., a better
matching of the human senses and thus a higher immersion, that seems
to hinder simulator sickness, lead to a higher presence perception. Thus,
we provide supporting evidence that inaccurate pose estimation models
hinder the perception of presence. However, we cannot argue that
optimized pose estimation models as such lead to a higher presence,
as the perception of presence is affected by many factors, including
simulation content, self-perception, and narrative [20,39,57]. Again,

the scale reliabilities restrict further conclusions and therefore more
systematic studies (without complex cognitive tasks) using alternative
methods of assessment are needed.

Despite the fact, that cybersickness, simulator sickness, and motion
sickness [75] may differ, our gait parameter results are especially con-
clusive reflecting real-world examples and relating symptoms. That is,
a sensory mismatch leads to a disturbance in gait behavior [79]. For
example, perceiving motion sickness on a ship, sensory disturbances
after a roller coaster ride, or sensory delays under the influence of
alcohol or drugs does strongly affect gait behavior. With regard to a
practical assessment, we thus argue that an assessment of a gait baseline
in comparison to a VR exposure assessment can provide insights when
using the five identified parameters and similar motion tasks which lead
to an objective assessment of sickness, which answers RQ.

Furthermore, we showed that these gait parameters allow to identify
the underlying pose estimation models they originate from. Extending
this approach, we showed that using all assessed (even non-linear) gait
parameters, i.e., more features, leads to a more precise classification.
Beyond that, we showed that multiple gait parameters clearly indicate
different pose estimation models and hence, allow to map gait parame-
ters on one of four corresponding individual levels of sickness. Thus,
if there is the possibility to asses simulator sickness before and after
a walk of a specific user, our method has the potential to act as an
objective sickness measurement tool for this specific user. Although
the accuracy of our classification results is rather optimistic as it only
classifies (separates) two models whose data points are unnaturally
far apart anyway, we think that our data-driven approach may also
yield accurate results even in uncontrolled scenarios with well-defined
walking gait parameters and corresponding pre-post SSQ assessment.
Because of the design of the presented experiment, the causality of the
relation between gait impacts and sickness cannot be explained. We
argue that the resulting sickness effects stand in strong relation to, and
at least to certain degree affect the gait cycle. While one could argue
that the gait cycle is directly affected by the disturbance of sensorimotor
contingencies, we cannot provide insights into the relations on the basis
of our data. However, we think that motion parameters, in our case,
gait parameters, can be used to objectively assess sickness effects, as a
relation is pointed out by our results.

6.1 Limitations

First, our tasks and the design was fairly complex and some measures
were not assessed precisely at the same time, which could have biased
the results. Although we assessed gait parameters only from W , B, R,
the slalom task could have also affected the simulator sickness mea-
sures and may have different results for the gait analysis. However, we
specifically designed this task as a representative task for behavior in
large-scale simulations, e.g., sports applications, rehabilitation appli-
cations, or the visit of a virtual museum [62]. Furthermore, both pose
estimation models had identical task exposures and thus, can still be
reliably compared.

Second, our sample size was relatively small, and hence care should
be taken when generalizing the result. Therefore, future replications
should increase the sample size and validate the model. Obviously, it is
difficult to generalize the current concept to applications not ”walking
in a straight line”. Large-scale VR tracking systems may enable people
to walk freely and allow for more straight-forward movement because
of more space. However, if we find relations of sickness and motion
parameters in a straight-line gait assessment, we may also find similar
parameters in less controlled scenarios and of alternate tracking data
(HMD IMU/position only). Yet, we argue that at the time of the current
research, an exploratory study in an uncontrolled way (free movement,
generic application) would have had too many potentially confusing
variables to consider.

Third, our measures are drawn from a large-scale system (about 45
× 35 m) that fuses IMU data with a large scale RTLS input. Logically,
we cannot generalize the model to room scale or desktop VR [58, 74].
However, larger-scale tracking systems will become available (e.g.,
radio-based [82] or optical systems such as Qualisys).
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7 CONCLUSION

We report novel findings on (1) the impact of simulation character-
istics on gait parameters, simulator sickness, and presence, (2) the
interrelationship of simulator sickness, presence, and gait, and (3) two
approaches, namely a pre-post assessment of gait parameters as well as
a classification approach to assess sickness through gait analysis. We
developed a simple, unnatural pose estimation model that introduces
a varying and higher latency to the simulation and an improved opti-
mized pose estimation model that introduces less latency and includes
a more accurate mapping of human senses. These models allowed us to
conduct a controlled study with known simulation characteristics. Eval-
uating the impacts on gait parameters, simulator sickness, and latency,
we found several notable effects. As hypothesized, the optimized model
successfully decreased sickness and an increased presence. Compared
to a baseline, gait parameters were most significantly impacted by the
simple model. With regard to the proposed model as depicted in Fig. 1,
our results, therefore, show that an unnatural mapping of senses seems
to hinder immersion, leads to higher sickness, and to lower presence.
We contributed a first approach to measurements for simulator sick-
ness, which can either be applied to compare a baseline and exposure
assessment or using our classification method and thus, extend existing
research with important guidelines. Our insights are of great impor-
tance to both VR researchers and developers and will benefit the VR
community, as our simulator sickness real-time measurement will be
useful in future simulator sickness research and their application may
allow dynamic content adaptation in response to a sickness increase.

7.1 Future Work

As we cannot estimate a precise level of sickness based on our results,
we suggest that future work should assess more fine-grained gradations
of simulation characteristics. Assessing multiple points of measure,
and generalizing the model (trained on many users) could lead to a
precise differentiation between levels of simulator sickness. Different
subjective assessments such as trait measures, the History SSQ [28],
individual factors [35], and physiological data may support systematic
evaluations. Furthermore, future work may utilize the presented results
to detect simulator sickness based on either gait parameters, or any
other motion data, such as raw motion data from the users’ head trans-
formation (HMD), see Fig. 10. As we can robustly classify the models
in firm real-time, our results suggest that gait parameters (or motion
parameters in general) can be reliably used to establish a real-time as-
sessment, which would be of great value for all VR applications. Thus,
based on a more fine-grained training set and including individual fac-
tors, the model could then be trained on any motion parameters to allow
for a real-time assessment that generalizes for all users (i.e., users that
are unknown to the model). Moreover, it has been argued that gender
differences in simulator sickness symptoms should be considered (see
Graeber et al. for a review [14]). Yet, findings are diverse [14, 55].
While gender did not significantly affect the results in our study, it
should be considered as a variable in future research. Also, the effects
of rest frames or points of references, e.g., the visualization of the
avatar’s feet, should be considered in respect to simulator sickness. As
the gait parameters are not easily accessible to all VR developers, future
work should consider using raw data of end effectors and a prediction
based on machine learning to assess and classify sickness.
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