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Abstract—The main challenge in estimating human velocity
from noisy Inertial Measurement Units (IMUs) are the errors
that accumulate by integrating noisy accelerometer signals over
a long time. Known approaches that work on step length esti-
mation are optimized for a specific application, sensor position,
and movement type, require an exhaustive (manual) parameter
tuning, and can thus not be applied to other movement types or to
a broader range of applications. Moreover, varying dynamics (as
they are present for instance in sports applications) cause abrupt
and unpredictable changes in step frequency or step length and
hence result in erroneous velocity estimates.

We use machine learning (ML) and deep learning (DL) to
estimate a human’s velocity. Our approach is robust to varying
motion states and orientation changes in dynamic situations.
On data from a single un-calibrated IMU, our novel recurrent
model not only outperforms the state-of-the-art on instantaneous
velocity (≤0.10 m/s) and on traveled distance (≤29 m/km). It
can also generalize to different and varying rates of motion and
provides accurate and precise velocity estimates.

I. INTRODUCTION

Feet- [1], [2] or torso-mounted [3]–[5] 6DoF IMUs (ac-
celerometers and gyroscopes) can be used to estimate stable
position and velocity without the need of any additional
external sensors and systems [6], [7]. However, for many real-
world applications it is inadequate to place IMUs on the feet
or the spine. But known estimation methods fail with other
more convenient placements, e.g., in a user’s pocket.

Velocity and traveled distance of human motion are hard
to capture accurately and robustly with only inertial sensors
because of rapid and abrupt changes in motion, individual gait,
and the dependence on a known, static sensor orientation [1].

Naive approaches integrate the acceleration over time to
estimate velocity: By permanently estimating the object’s
orientation and subtracting the gravitation component from
the acceleration signal, this yields the object’s acceleration
in its navigation frame (and integration over time returns its
velocity). But due to sensor noise (and other artifacts) this is
only stable for a short while, making such approaches often
only useful as add-ons to multi-sensor fusion systems [8].

Advanced approaches use (peak) detection for steps and
estimate their lengths. Combinations with heading estima-
tion [5] yield more exact velocity estimates [9], [10]. But
such approaches require a manual parameter tuning which
also makes them highly dependent on the sensor’s mounting
position [6]. And they are often limited to (walking) motion
with little variations and fail to generalize to broader motion
types, e.g., running, or to the transitioning between them [10].

This paper considers IMU-based velocity estimation as a
regression problem that we address with machine learning.
We use a single un-calibrated low-cost IMU and capture
movement data in an extensive measurement campaign with
a millimeter-accurate optical reference system. We compare
several ML- and DL-approaches with state-of-the-art methods
and show that our novel bidirectional LSTM (long short-
term memory) architecture learns to map the IMU signals
to different movement velocities in motion states such as
walking, jogging, running, and random (a natural combination
of all) of different subjects. This also works robustly under
dynamically varying IMU orientations as we only use the
signal magnitude vector (SMV).

Our experiments show that while classical methods and
ML-approaches (on extracted features) cannot generalize to
different and varying rates of motion, our DL-approach (on
the raw measurements) provides accurate and precise velocity
estimates. Our recurrent DL method directly estimates from
the history of raw accelerations and raw angular velocities
and outperforms the state-of-the-art on instantaneous velocity
(≤ 0.10m/s) and on traveled distance (≤ 29m/km) [8], [11].

The paper is organized as follows. Sec. II reviews related
work. Sec. III formalizes the problem. Sec. IV shows our
processing pipeline and explains our methods. Sec. V covers
the data acquisition and introduces our experimental setup.
Sec. VI evaluates our methods and discusses results.

II. RELATED WORK

While early approaches were limited to moving vehicles
in military applications [12], low-cost IMUs are now used978-1-7281-1788-1/19/$31.00 © 2019 IEEE
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in many application areas such as robotics and mobile de-
vices [1], [3]–[5]. However, due to limited size and costs their
accuracy is limited. Hence, such IMUs are only used together
with other sensors such as visual-inertial odometers [13].

Pedestrian Dead Reckoning (PDR) uses inertial mea-
surements to detect steps and estimate stride length and
direction by means of empirical formulas [14]. Approaches
that yield errors below 0.4 m/s typically assume a rigid device
orientation that is aligned with the direction of travel [10],
[15]. Hence, such methods suffer from more complex and
varying movements (e.g., abrupt changes or varying velocities)
as orientation highly fluctuates. The main challenge is that an
incorrect segmentation of the step shift leads to an inaccurate
step length estimation. To compensate, a number of parameters
must be tuned to the user’s walking habits and the specific
use-case [16]. Current research focuses on fusing PDR with
external sensors such as WiFi [11], UWB [8], magnetic
fields [17], and environmental information [18], [19] as the
technical challenges of sensor drift and the decomposition
of the acceleration are still unresolved. Methods that use
frequency-based parameters that are invariant to rotation still
suffer from bad accuracy [1], [4].

Biomechanical models exploit knowledge on the mechan-
ics of the human body in the step phase. However, as
movements are usually complex such mechanics can only
be approximated [1], [20]–[22]. Usually, different models for
different IMU positions are used (spine, hand, pocket [1],
[23], foot [1], [21], and head [5]). As the mechanics also
differ between movement types (e.g., walking and running)
they need specific step length estimators [4], [21], [23]. Even
clever combinations of step detection with gait analysis suffer
from orientation variance [6], [7], [24].

Hybrid machine learning methods [2], [9], [23], [25]–[27]
first classify steps and then select an adequate step length
estimator. Most of them also exploit zero updating velocity
moments (ZUPT) when the foot touches the ground [2], [6],
[28] which can be used to eliminate the sensor drift (error
<0.25 m/s) [2], [19]. Unfortunately, at higher movement ve-
locities both the availability and confidence of ZUPT-moments
decrease due to noise and motion artifacts [2], [6], [7], [23].
This often misleads such hybrid methods [7], [9] to use a
wrong velocity estimator which results in a low accuracy [27].
While IMU-based velocity estimation has been proposed as a
regression problem in [29], [30] the sensor placement was
rigid and free from noise which cannot be assumed in the
real world. Preliminary work mainly focuses on walking to
simplify velocity estimation.

Current DL-methods often combine various sensors to ad-
dress issues in the field of relative localization, e.g., visual-
inertial odometer [13]. Or they fuse at least two [18] or
military-grade IMUs [7] to average accumulating errors and to
raise the confidence of their algorithms. Others learn intuitive
physics [5] and design state-space models [20] or monitor
neural networks via physical knowledge [14], [22]. However,
they all suffer from the same problem: they either rely on
tightly coupled sensor fusion [31] or on the availability of

reliable contextual information (like external sensors [1], [8],
[17], [31] or maps [11], [18], [19]). Thus, their accuracy
heavily depends on the external information source.

Recent studies use deep (recurrent) networks to either de-
noise a signal [16], [26], [32], detect steps [2], [9], [23], or
estimate their length [2], [9], [25]. But since such a split of
the problem forces the networks to deal with multiple interde-
pendent errors, these methods cannot learn the important error
relationship. In contrast, our method ”black-boxes” all errors
end-to-end, i.e., from acceleration to reference velocity, keeps
their interconnection, and provides direct inertial odometry
(with higher reliability and accuracy) on a single orientation-
invariant and uncalibrated inertial sensor in dynamic motion.

III. PROBLEM DESCRIPTION

To provide accurate velocities, a raw acceleration acc
signal must be decomposed into its linear and gravitation
components. As velocity is typically derived from the linear
component (per axis) we must estimate the gravity component
(per axis) and subtract it from the raw signal (per axis). The
accuracy of this estimation depends on the placement of the
sensor, its orientation w.r.t. the body part it is attached to,
the motion state, and of course noise: When the zero-mean
Gaussian noise component c is low (e.g., when the sensor is
not moving) we can reliably determine the initial biases (i.e.,
calibration offsets), by projecting the rotation of the acc signal
into the navigation frame, subtracting the gravity, and inte-
grating to obtain velocity. However, dynamic movements or a
non-rigid mounting of the sensor increase this complexity of
the modeling (as c is high) [15]. But as in dynamic movements
(e.g., sports), orientation estimation is inaccurate acc cannot
be easily used for velocity estimation [25]. In addition, even
tactical-grade IMUs only provide stable estimates in the short-
run (as the error propagates through integration) and as noise
is not low in dynamic situations.

To cope with these problems, we describe the IMU-based
velocity estimation as a supervised regression problem [33]
where we derive a functional relation between the numerical
velocity and the IMU-data (i.e., the pattern) by fitting the
mapping to labeled data. Through regression analysis, we
derive a function that approximates the mapping from SMV
to the reference velocity by employing a set of trained pa-
rameters. Furthermore, we show how to circumvent the error-
prone projection when c is high. As we apply our methods
directly on the signal magnitude vector (SMV) or on its
characteristic features the calculation is rotation-invariant and
does not require an orientation estimator.

Moreover, we also assume that only a single sensor is
located on a smartphone within the pocket of the subject. Thus,
the sensor is not rigidly connected to the leg of the subject, as
the phone can move within the pocket and hence, our ML/DL
methods must implicitly learn to project the body frame to the
navigation frame via multiple coordinate frames (from pocket,
over leg, to subject). In addition, our solution is applicable in
the real-world for many scenarios as the pocket is a natural
position for a smartphone.
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Fig. 1. Our processing pipeline.

IV. METHOD

A. Processing Pipeline and Pre-Processing

Fig. 1 sketches our processing pipeline. The gray elements
are only used to provide the input data for the implementation
of state-of-the-art baselines for our benchmarks, see Sec. VI.
First, we pre-process the raw input data (from accelerome-
ter acc and gyroscope gyr) by linear interpolation and re-
sampling, and calculate the signal magnitude vectors (SMVs).
Second, we process the input data, i.e., the set of acc- and gyr-
measurements that represent all activities (walking, jogging,
running, and random, of one specific subject) into segments s.
Next, we slice each s into consecutive windows w. While our
DL approach works directly on w, we extract features fw from
w for the ML methods, see Sec. V-B. Finally, we split the data
into train, validation, and test sets and train our estimators on
labeled data. At run-time, we predict velocities from unknown
input data using the same pipeline.

In a preliminary study, we evaluated different sampling rates
fs (50, 100, 200, 400) of the sensors and different window
sizes Nw (64, 128, 256, 512) to find combinations of fs and
Nw that are computationally efficient and still yield accurate
velocity estimates. We found the bold settings to embed
enough prominent characteristics (1.28s already cover long-
term relations of human motion that enable the applicability
of our DL method) at low computational costs. A segment
length of 20 seconds and sliding windows with 50% overlap
yield the best performance.

On each resampled and interpolated segment s we calculate
SMVs. As we have two input streams (acc and gyr) we
studied the following two processing options: an intuitive 2-
dimensional (2D) representation, i.e., 2×Nw ×#(s):

SMV (s(acc)) =
√
(acc2x + acc2y + acc2z) and

SMV (s(gyr)) =
√

(gyr2x + gyr2y + gyr2z),

and a 1D combination of acc and gyr, i.e., 1×Nw ×#(s):

SMV (s(acc, gyr)) =
√

(acc2 + gyr2).

Finally, to evaluate our methods we compute two different
reference variables: the instantaneous velocity vref per win-
dow w and the covered reference distance dref per segment
s. We calculate vref by differentiating the 2D velocities, i.e.,
the translational layer, spanned by the x- and y-axes obtained
from the reference system (w.r.t. time and norm). We calculate
dref accordingly, but this time we differentiate all windows of
the segment. We determine the errors based on vref and dref .

B. Deep Learning Models

Neural networks such as multi-layer perceptrons (MLPs)
are composed of an input layer X , one or more hidden
layers H , and an output layer Y . Input signals propagate
through the network, a loss-function compares the output to
the ground truth label to compute the error, error signals
propagate backward through the network, and weights are
adjusted to reduce the error [34]. As all MLP-variants only
take a fixed length of input measurement values m, i.e., acc
and gyr samples, at time step i to predict a velocity vi, they
cannot describe the relationship of time and context across
consecutive measurements. But those are relevant for motion
as it is a temporal-dynamic process that depends on different
factors like acceleration, velocity, and direction.

Thus we propose to use time- and context-sensitive neu-
ral networks to learn such dependencies within a single
window and across several windows. Since recurrent neural
networks (RNN) such as Long-Short-Term-Memory LSTM- or
bi-directional LSTMs (BLSTMs)-networks learn both short-
term dependencies (within a single window) and long-term
dependencies (between windows) they capture (a) the relation
of each measurement in a window to all other measurements
in the same window (i.e., how each measurement affects other
measurements in the same window) and (b) their dependencies
within the full segment (i.e., how each measurement affects
the measurements in another window, e.g., how movements
change between windows) [32].

An obvious approach is to take hand-crafted features (that
we also use for ML-methods, see Sec. V-B) and to use them
as an input to the recurrent network. However, convolutional
neural networks (CNNs) proved to be much better feature
extractors (while they cannot set these features into time-
context). Thus we propose a model that uses a CNN to extract
high-level features from raw input signals and connect them
trough time with an RNN model.

Fig. 2 shows our CNN-BLSTM model. Data propagates
from the bottom to the top. After an initial unfolding of the
data from our batch, 1D-convolution kernels extract high-level
features, while a 1D filter kernel fk slides over a sequence
(i.e., window vector wv) to detect features at different posi-
tions [35]. The idea behind the 1D convolution is to perform
element-by-element multiplication of a 1D filter kernel fk with
each 1D wv on d windows to obtain a time-sensitive feature
map [36]. We use two such layers to obtain high-level features.

Now that we have extracted high-level features from the
SMV, we directly put them into our BLSTM without any added
pooling (max. and average pooling would remove valuable
sequential organization [36], [37]). Thus, the BLSTM tracks
the emergence of features over time. We extract bottleneck
features with a many-to-one (i.e., X>Y =1) BLSTM architec-
ture. Unlike LSTM, our BLSTM processes information about
the future and the past as it retrieves short-term long-term
contexts of input to the current output in both the forward
and backward directions [35]. The BLSTM acts as a time-
and context-sensitive detector and tracker of high-level motion
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Fig. 2. The architecture of our CNN-BLSTM network. From bottom to top:
First we fold windows with dimension d×Nw each to a corresponding array
(wf×d); the first 1D convolution layer applies k=128 filter kernels fk = Nw

each with size 1×3 (i.e., #k = Nw; we found that one filter kernel fk , i.e.,
one feature [35], per measurement value m yields accurate results) followed
by a batch normalization (BN) and a rectified linear unit (ReLU) layer; the
second 2D convolution layer (wf/2× d) applies Nw filter kernels with size
1×3, again followed by BN and ReLU; if d==2, an unfolding layer projects
the feature map back to its initial sequence structure according to the batch’s
info that is passed trough the (un)folding layers; a flattening layer provides a
flat sequence to the BLSTM’s input layer; the BLSTM’s last layer acts as a
bottleneck and yields the latest Yn that is processed through a dropout layer;
a fully connected layer provides a 1×1 output to the regression layer that
computes the loss with a half-mean-squared error.

features (which the convolution layers extract) on the signal
embedding (acc and gyr). Two hidden layers (Hl and Hl+1)
provide forward and backward directions. Following previous
work [16], we use the last hidden layer as the bottleneck layer.

Note, that the sequence length s defines how many con-
secutive measurement values m the model processes in each
iteration. The longer the sequence is, the more motion depen-
dencies the model learns to interpret correctly, but the more
complex the model gets [32]. The model learns how to obtain
a single velocity from a single set of measurement values and
to predict consecutive velocities. While Xi represents an input
set at time-step i, the resulting velocity estimation is Yi. With
a randomly initialized initial state H0, the model does not have
prior knowledge about the motion and consequently learns to
estimate the velocity from local information.

During the training phase, our model learns to leverage
latent motion characteristics from a consecutive sequence s=w

of data points m per window wi and their corresponding
reference velocity value vref . At run-time it predicts the
current accurate and precise velocity of a subject on a window
wi of raw acc and gyr measurements. We take the last velocity
estimate Yn as the final velocity estimate v per window that
is estimated by a final regression layer.

V. EXPERIMENTAL SETUP

Measurement Area. We record the motion data (i.e.,
acc and gyr) at the Fraunhofer IIS L.I.N.K. (localization,
identification, navigation, communication) testing facility in
Nuremberg. It provides a unique test ground on 1,400 m2,
see Fig. 3 (left) [38]. We used the following measurement
and reference systems to collect and label our training, test,
and evaluation data, and to capture the properties of different
movement types (i.e., walking, jogging, running, and random).

Reference System. We recorded reference data with 28
cameras of the millimeter-accurate optical Qualisys motion
tracking system (spherical error probable (SEP95) ≤ 5mm
and ≤ 0.1°). The cameras are mounted on the edges of the
upper side of the test area and cover a volume of 11.025 m3

(45 × 35 × 7 m). Subjects wear 4 small trackable reflective
markers, attached to an elastic ribbon, see Fig. 3 (right).
All cameras permanently had a clear field of view when we
tracked each subject’s position and orientation at 100 Hz.

IMU Measurement Device. We use two Samsung Galaxy
S7 smartphones with their acc and gyr sensors (STMicroelec-
tronics LSM6DS3 samples acc at ±16 G and gyr at ±1000
dps at 100 Hz) to measure the subject’s accelerations and
angular rates. To cover motion differences between the two
legs we loosely placed a phone (inverse portrait) in each of
the pockets, see Fig. 3 (middle). Note: we use two phones to
collect more data per subject, but our methods only use the
data from a single phone.

IMU Software. We access the raw IMU sensor data of
the smartphones via the Android API (Version 6, 2019) [27].
We store them along with timestamps that are globally NTP-
time-synchronized. Our API also receives the NTP-time-
synchronized 6DoF state information data as a stream from
Qualisys via 5 GHz WiFi. We labeled each activity and mea-
surement (acc, gyr, and reference data) and stored separate
files per subject. Thus, our dataset can be used for activity
classification as well.

A. Data Acquisition

16 people (male: 12, female: 4, avg. age: 23.4, height min.
146 cm, max. 186 cm, SD 17 cm) were asked to do 4 different

45 m

35 m

Fig. 3. Setup. Left: Lateral view of the data acquisition environment; Middle:
Smartphones in the pockets of a trial subject; Right: Trackable object of the
reference system.
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Fig. 4. Raw acc signals: SMV (blue), reference velocity (red).

types of movement activities (walking, jogging, running, and
random movements, a natural combination of all) within our
tracking area (one activity after another). After the completion
of each activity, the recordings were analyzed for complete-
ness and manually labeled (class according to activity). Each
activity took 6 minutes on average. The walking, jogging, and
running activities were performed at different speeds (walking
on avg. 0.7; min. 0.5; max. 0.9; SD 0.2; jogging on avg. 1.3;
min. 0.8; max. 2.4; SD 0.34; running on avg. 1.9; min. 1.2;
max. 3.5; SD 0.6; m

s ) but along similar movement trajectories.
The random movements were performed differently by each
participant (changing between walking, jogging, and running
randomly during the measurement). Hence, the movement
speed and trajectory was chosen individually by each subject
(on avg. 0.8; min. 0.1; max. 3.4; SD 0.8; m

s ).
The participants were asked to wear typical running sports

clothes and to take the study as a serious workout. As different
subjects wore different pants, with wide or tight pockets, this
introduced various sensor noise and motion artifacts.

In total, we recorded approx. 800 min (approx. 24 min per
subject) of motion data, see Fig. 5. Broken data records were
both visually and statistically identified. Hence, to also equally
distribute our dataset, 3 (out of 19) runs were completely
removed from the dataset, short dropouts were reconstructed
by means of resampling and interpolation. The synchronization
of the time-stamps had an error of <1 ns/h due to clock drifts
between the reference and the measuring sensor.

Fig. 4 shows the acceleration data (blue) and velocity data
(red) for walking, jogging, and running. The signal complexity
increases at higher velocities (i.e., frequency and noise in-
crease while the peak prominence decreases from low/left to
high/right velocities). The low peak prominence also explains
the inefficiency of peak-detecting approaches (see Sec. VI) as
they vanish in high and noisy velocities.

B. Parameterization of Velocity Estimators

Baseline I – Classic Step Length Estimation requires an
additional pre-processing. We use a Butterworth low-pass filter
with a cutoff frequency of 15 Hz to remove high-frequency
noise and then detect steps in each segment s to estimate their
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Fig. 5. Dataset statistics with a quasi-equal distribution.

length. Our step detection detects the peaks in either the acc or
the gyr signals or both. For sensors in pockets, we found that
the peak detection works best on the acc’s SMV . We dropped
complex hybrid models as they suffer from specific parameter
selections which are especially problematic for noisy data or
varying subjects with unknown Ks. Instead, we achieve the
best estimates for the step length with frequency model l =
Kh
√
fs, where h is the height of the person, K is a calibration

parameter, and fs is the step frequency [16].
For our experiments we use two such models. First, we

combine K and h into a subject-activity-specific calibration
parameter Ks that we calibrate using ground truth data. We use
the first few steps (i.e., 1 min) of each activity and determine
Ks with the help of the reference system, i.e., using the
difference between the true and the estimated traveled distance.
Second, we derive a general calibration parameter Kg=1.2771,
which is the average of all Ks calibration parameters for all
our subjects (except for the left-out test subject). We use Kg

as our generalized model. This allows a comparison of all our
methods and is close to the typical use case in practice. We
estimate the velocity by multiplying the step length (calculated
by the model) with the delta step time, i.e., the difference
between two consecutive steps.

Baseline II – Machine Learning with Gaussian Processes
(ML-GP). For our ML-based baseline, we evaluate different
regression methods on a selection of hand-crafted features. We
carefully select and extract features from the windows (it is an
elaborate engineering task to find adequate features that best
fit the use case).

We extract both statistical and frequency domain [30] fea-
tures per window, inspired by [33]. Frequency domain feature
selection: spectral bandwidth, spectral flatness, i.e., the ratio of
the geometric mean to the arithmetic mean of the magnitude
spectrum of the signal, spectral roll-off, i.e., frequency below
which a specified percentage of the total spectral energy lies,
spectral centroid, i.e., the spectral centroid (mean), variance,
skew, and kurtosis of the absolute Fourier transform spectrum.

Time-domain features: absolute energy, i.e., the absolute
energy of the time series which is the sum over the squared val-
ues, maximum, minimum, mean, median, variance. While all
time-domain features are straightforward to calculate, for the
frequency domain features we first apply a short-time Fourier
transform (STFT) to Nw. From the STFT-like representation of
the time-frequency distribution, we then extracted the features.
A handcrafted feature analysis and a dimensionality reduction
(principal component analysis, PCA) reduce the number of
features from 30 to only 2.

For our ML-based baseline, we also evaluate different re-
gression methods: Classification and Regression Tree (CART),
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Support Vector Regression (SVR) [33] and Gaussian Pro-
cesses [30], [39] (GP). Through a grid search, we obtained
optimal hyper-parameters.1 Among the estimators, GP with
a Matern52 kernel yields the highest accuracy (but at higher
computational costs). To cope with the high dimensionality
of the data, we use a sparse GP. [30] We use this best
configuration as the baseline of our ML-methods.

CNN-BLSTM Parameterization. For our evaluation, we
also investigated different architectures such as LSTM,
BLSTM, and CNN-LSTM. It turned out, that our CNN-
BLSTM performed best. In a preliminary experiment, we kept
all LSTM and BLSTM blocks identically w.r.t. the number
of hidden layers and the number of LSTM cells to find the
optimal architecture. For our experiments, two convolution
layers and one BLSTM block with 128 LSTM cells yield
the best accuracy at short inference times. A convolution with
128 filter vectors fv=1×3 balances best between accuracy and
inference time. We do not pad as our input windows have
always a constant length. We set the dropout rate to 50%.

We evaluated different sample rates (50, 100 Hz) and win-
dow lengths (64, 128) on either 1D or 2D SMVs of w. The
sequence length s (i.e., s=w) at Nw=128 holds a maximum
of 2.56 s (128/50 Hz) of motion data. We trained each set
of parameters for 33 epochs, with early stopping based on the
validation set performance to prevent over-fitting.2

VI. RESULTS

We compare our DL-model with our baselines along with
two variables: (1) the error of the velocity and (2) the error of
the covered distance. To quantify them we calculate circular
error probabilities (CEP), distance error per meter (DEPM),
root mean square error (RMSE), mean absolute error (MAE),
and mean squared error (MSE) on the velocities of both our
validation and unknown test segment. We only discuss the
results of the best models, see Sec. V-B.

A. Accuracy Estimation

To evaluate the accuracy we train our models on 80% and
validate them on 20% of all our data.

From Fig. 6(a) we see that 50% of all estimates yield an
absolute velocity error below 0.50 m/s for both the ML-GP
and DL-methods, while with the Classic step length estimation
50% of all velocities have an error of more than 1 m/s and
more than 2 m/s in 95% (at the same time ML-GP estimates
velocities with an error below 1 m/s for 80% of the samples).
DL outperforms ML in the interval between 80 and 95%,
where the errors for ML-GP rises to 1.46 m/s whereas DL
still only has an estimation error of 0.71 m/s. This shows the

1Avail. ML gridsearch parameters: SVR Linear C=100 [1,10,100,1000],
SVR Poly. C=100 [1,10,100,1000], degree=3 [2:1:6], SVR RBF gamma=0.001
[0.001,0.0001], C=100 [1,10,100,1000] for every combination of fs (50,100)
and Nw (64,128), DT max. depth=97 [1:1:150], max. features=27 [1:1:30],
max. leaf nodes=15 [1:1:20] [39].

2Avail. DL gridsearch parameter: solver: Adam [SGD, Adam, rmsprop]
β1, β2=0.01, Momentum=0.9, B/LSTM layers=2 [1,2,3,4], cells/layer=128
[16,32,64,128,256], initial learning rate (lr)=0.01 [1.0:0.1:0.00001], lr
drop rate per epoch=0.9, batch size=32 [1,10,16,32,64,128,256,500]; CNN
fv=1×3 [37].

TABLE I
ERROR STATISTICS. CEPX, RMSE, MSE, MAE IN [m/s] AND [m] AND

DEPM IN [m].

CEP
25 50 75 95 M

SE

M
A

E

R
M

SE

D
EP

M

Classic              0.47  1.01  1.68  2.89  1.45  2.12  1.64  0.20
ML-GP             0.13  0.31  0.69  1.46  0.70  0.50  0.49  0.11
CNN-BLSTM  0.04  0.11  0.23  0.71  0.35  0.12  0.20  7e-4Va

lid
at

io
n

Classic              0.62  1.41  2.11  3.05  1.70  2.89  1.42  0.43
ML-GP             0.13  0.33  0.71  1.47  0.68  0.46  0.49  0.21
CNN-BLSTM  0.09  0.18  0.33  0.63  0.32  0.10  0.24  0.03

Te
st

N   =128w
f   =100 Hzs

robustness of our DL-approach as it is not affected by outliers
that much (in line with an RMSE of 0.35 m/s).

Fig. 6(b) shows the probability density function (PDF). The
error distribution in the case of DL is nearly symmetric and
forms a Gaussian-like distribution with a small SD while ML-
GP has (only) a slight bias and a (slightly) larger SD. The
Classic method instead shows a much larger SD with a low
distribution around zero which indicates more errors.

Fig. 6(c) shows the deviation of the estimated from the
reference traveled distances (remember that the sum of every
window’s velocity yields the total distance). Impressively, even
after a total travel distance of 28,455 m, the DL method nearly
fits the baseline as the error is only -20 m, while the Classic
and the ML-GP methods are off by 4,955 m and -3955 m.

Table I shows the quintessence of velocity estimation errors
(CEPx, RMSE, MSE, MAE) and the traveled distance error
(DEPM) for both our validation and test dataset.

B. Generalization of our Methods

Left-out Subjects. To evaluate the generalization of our
models, we used the data of 15 subjects for training and
validation and tested on the data of a single subject. The test
subject performed the same activities. The lower part of Table I
shows the errors of the test subject. The Classic method (with
Kg=1.2771) yields an RMSE of 1.7 m/s and an MAE of
1.4 m/s. The results show that the test subject’s movement is
quite average and fits the training data well, but still lags far
behind ML-GP and DL. While ML-GP performs quite well on
the test subject with an RMSE of 0.68 m/s and an MAE of
0.49 m/s (which is even better than on the validation set), the
CNN-BLSTM outperforms this with an RMSE of 0.32 m/s
and an MAE of 0.24 m/s. These results show that our novel
CNN-BLSTM model generalizes well even to unknown data.

Left-out devices. To evaluate the generalization of our
models, we used the Samsung Galaxy S7 data for training
and validation and tested it on data of a Samsung Galaxy
Note 4 (InvenSense MPU-6500, 6 DOF IMU). Although
the test results showed no differences (∅SD <0.01%), data
normalization of the sensors of different phones is necessary
to cope with sensor-specific alignment and calibration offsets.

Distance Traveled. In a direct comparison of the trav-
eled distance (validation and test) the Classic method quasi-
linearly increases its error with growing distance, i.e., it
overshoots. (Validation set: 33,410/28,455=1,174 m/km; test
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Fig. 6. Results on the validation set from left to right: absolute error CDF, error PDF, and distance traveled.

set: 9,666/5,184=1,864 m/km). However, while ML-GP can
cope with the short distance of the test set (5,361/5,184=34
m/km), it undershoots significantly on the long validation
run (-160 m/km). This implies that ML struggles in learning
the physical relations of motion from handcrafted features.
Instead, the DL method (-20 m) fits the traveled distance of
28,455 m and yields low error rates on both validation (0.7
m/km) and test (28 m/km). This implies that our DL method
does not over-fit the data, as the test set is unknown and test
and validation sets are different.

Random Movement. Although the results of the methods
on our validation and test set already embed random activities,
we explicitly evaluated our methods on the test subject’s ran-
dom movement. Since the results do not show anomalies, we
only discuss the traveled distance error: The Classic method
again overshoots by 759 m (1931/1173 m) while ML-GP
(973/1173 m) and DL (1169/1173 m) again undershoot by
-200 m and just -4 m.

C. CNN-BLSTM Long-Term Dependencies

From the architecture of our model, it is obvious that we
cannot only handle short-term dependencies but also handle
large data streams, i.e., 20 s sequences of windows. This is
when our model’s (un)folding layers and the for/backward
extensions of BLSTM shine. Our model can learn long-term
dependencies across consecutive windows and hence achieves
even lower error rates on the test set (RMSE 0.21 m/s). In
contrast, ML-GP (RMSE 1.21 m/s) does not benefit from
longer data streams as the features blur out.

D. Further Findings

Computational Effort. In total, the training time is high for
both ML-GP (∅n×33h) and CNN-BLSTM (∅n×9h), with n
= # parameter sets. Instead, the inference time is low for all
models (note: the architecture of our DL model is simple).

Impact of Parameters. A higher fs results in redundant
information per window, slows down the training process
for DL (∅≥31 h at 200 Hz), lowers valuable information
content for ML-GP (test set: RMSE 1.21 m/s), and raises
the computational effort for Classic methods. Instead, a lower
fs=50 increases computational performance, but yields less
accurate estimates on the test set (RMSE: Classic 1.9, ML-
GP 0.74, DL 0.32 m/s). However, this may still be an

option for smartphone-based localization, when lower energy
consumption is important. Our experiments revealed that DL
on both 1D- and 2D-SMVs performs similarly (RMSE SD
≤0.01 m/s) but 1D-SMV saves computational costs.

Although ML-GP shows good and robust generalization
effects, a medium accuracy, effort, and cost due to handcrafted
features, DL yields the highest accuracy, at lower design costs,
but at high pre-computational costs due to the long-lasting
grid-search. The results showed that CNN-BLSTM surpasses
all other models and networks. This demonstrates that the
CNN-BLSTM takes advantage of the CNN’s extraction of
optimal local features and the treatment of sequential long-
term contextual dependencies of RNN. As we are taking the
CNN-BLSTM end-to-end, our CNN part also extracts features
that impact the recurrent units. However, even our ML- and
DL-methods suffer from the accumulation of relative errors.
Even our DL method accumulates a noticeable error of 145
m (28 m/km) on an unknown test dataset (5,329/5,184 m).
Hence, there are still research challenges ahead of us.

Although, dynamic movements and pronounced walking
habits of an unknown test subject do not affect the quality of
our DL method much (RMSE SD ≤0.01 m/s) there still may
be unpredictable real-world situations that we do not cover yet.
Thus, more data to increase the boundaries of generality, or
training on synthetic data and retraining on real data may help
here. Nevertheless, while we can align and map measurement
values from the past to future labels in the training phase it is
unclear how to predict future velocities at run-time.

VII. CONCLUSION

The paper compares current methods of ML and DL with
classical methods for implicit gravity, noise, and signal artifact
compensation to provide a high and robust velocity estimate
both on a short and long duration of human motion. We present
data-driven approaches that learn to map a velocity vector of
varying velocities to an accurate reference velocity in dynamic
scenarios. Our methods are invariant to a sensor’s orientation
and placement. Our evaluation shows that our novel CNN-
BLSTM performs well in your pocket: instantaneous velocity
error ≤0.10 m/s) and traveled distance error ≤29 m/km.

Future work will explicitly explore other types of move-
ment, such as jumping and climbing stairs.
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