
2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 September 2018, Nantes, France

Recurrent Neural Networks on Drifting
Time-of-Flight Measurements

Tobias Feigl∗†, Thorsten Nowak‡, Michael Philippsen∗, Thorsten Edelhäußer†, Christopher Mutschler†§
{ tobias.feigl | thorsten.nowak | michael.philippsen } @ fau.de

{ thorsten.edelhaeusser | christopher.mutschler } @iis.fraunhofer.de

∗Programming Systems Group (Informatics II) †Machine Learning and Information Fusion Group
‡Institute of Information Technology (Comm. Electronics) Precise Positioning and Analytics Department

§Machine Learning and Data Analytics Lab

Friedrich-Alexander University Erlangen-Nürnberg Fraunhofer Institute for Integrated Circuits IIS
Erlangen, Germany Nürnberg, Germany

Abstract—Kalman filters (KFs) are popular methods to es-
timate position information from a set of time-of-flight (ToF)
values in radio frequency (RF)-based locating systems. Such
filters are proven to be optimal under zero-mean Gaussian
error distributions. In presence of multipath propagation ToF
measurement errors drift due to small-scale motion. This results
in changing phases of the multipath components (MPCs) which
cause a drift on the ToF measurements. Thus, on a short-
term scale the ToF measurements have a non-constant bias
that changes while moving. KFs cannot distinguish between the
drifting measurement errors and the true motion of the tracked
object. Hence, very rigid motion models have to be used for
the KF which commonly causes the filters to diverge. Therefore,
the KF cannot resolve the short-term errors of consecutive
measurements and the long-term motion of the tracked object.

This paper presents a data-driven approach that uses training
sequences to derive a near-optimal position estimator. A Long
Short-Term Memory (LSTM) Recurrent Neural Network (RNN)
learns to interpret drifting errors in ToF measurements of
a tracked dynamic object directly from raw ToF data. Our
evaluation shows that our approach outperforms state-of-the-
art KFs on both synthetically generated and real-world dynamic
motion trajectories that include drifting ToF measurement errors.

I. INTRODUCTION

Radio-based localization is a key component of many indoor
applications and industrial environments. Commonly, a set
of synchronized antennas receives radio signal bursts from
mobile tags to exploit time-of-flight (ToF) values, like time-
of-arrival (ToA) and time-difference-of-arrival (TDoA), to
estimate a position.

The multipath propagation of RF signals is the most promi-
nent error source that adds a dynamic bias (drift) to the ToF
measurements. In dynamic motion scenarios the phases of the
multipath components (MPCs) change. This results in a ToF
drift as consecutive ToF measurements are impaired by biased
delay errors due to multipath. Thus, the longer one tracks a
quasi-linear motion of an object the better one can describe this
drifting behavior, for example by means of Bayesian filters.

In practice, objects move dynamically and non-linearly and
change their motion behavior both over a short- and a long-
term. Hence, the main challenge is to distinguish between
the true motion and the drift of the ToF measurements.
Unfortunately, Bayesian filters cannot correctly describe these

overlapping object dynamics and multipath-induced motion
(i.e., the drifting error), as they only consider the short-term
context. In Markovian motion models [1] the current state only
depends on its previous state, independent of anything that
happened before. Bayesian filters cannot take long-term de-
pendencies into account and thus provide a poor performance.

Their performance is also limited by the empirical know-
ledge that has to be provided. This includes a good estimate of
the motion model, process and measurement noise. However,
even if perfectly known, Bayesian filters only have a limited
ability to describe complex motion. To overcome long-term
dependent signal drift, a Kalman filter (KF) tunes its motion
model to be rigid. Hence, it cannot react to rapid motion
changes or it may even diverge. Instead, tuning the KF’s Q-
and R-parameters so that they fit to the measurements, lets the
filter follow the short-term delay error drifts. Thus, by design
a KF provides inaccurate and imprecise trajectory estimates.

Instead of using empirical knowledge, to specify the system
and the motion of an object we use raw ToF data and highly
precise ground truth positions to train a filter model that uses
a Recurrent Neural Network (RNN) with Long Short-Term
Memory (LSTM). While simple neural networks only interpret
snapshots of the measurement, an LSTM learns both short-
and long-term dependencies from noisy radio signals. The
time- and context-sensitive LSTM interprets time-dependent
multipath scenarios, and thus drifting measurements, and can
return an absolute 3-dimensional position from raw ToF data.
We train our LSTM end-to-end with both synthetic trajectory
data (that contains long-term signal drift) and with real-
world ToA measurements to fit sub-millimeter precise baseline
positions. For the evaluation we compare our estimates with
those from a KF.

The paper is structured as follows. Sec. II reviews related
work before we cover the foundation in Sec. III. Afterwards
we present the details of our LSTM model in Sec. IV. Sec. V
lines out the experimental setup and Sec. VI evaluates the
results. Sec. VII concludes.

II. RELATED WORK

Radio-frequency-based positioning systems suffer from sig-
nal propagation effects such as attenuation, scattering, diffrac-

978-1-5386-5635-8/18/$31.00 ©2018 IEEE

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on December 30,2021 at 20:24:26 UTC from IEEE Xplore. Restrictions apply.

2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 September 2018, Nantes, France

tion, and reflection, which lead to a geometrical dilution of
precision and to multipath effects [2], [3].

Naive standalone Bayesian Filters such as KFs and Particle
Filters (PF) use a (linear) motion model and transition state.
They (re-)calibrate and smooth the real physical position by
continuously estimating measurement and process covariance
matrices. To make this work in practice, this needs a lot of
expertise and manual fine-tuning of filter parameters [4]. As
the sensor characteristics (and the noise) change with time,
an a-priori parameterized filter cannot correctly represent the
real-world state and must return wrong position estimates. But
what is more important, the covariance matrices only represent
a snapshot of the sensor and motion characteristics and cannot
describe a long-term dependency of a moving object. Even
popular enhancements such as Extended and Unscented KFs
cannot correctly describe highly non-linear motion models
as they would need to define an infinite number of linear
motion constraints [5]. While PFs can correctly approximate
the position if there are enough particles, they also perform
poorly in highly dynamic situations or if the tracking is
lost [6].

Optimization techniques like Bancroft, Gradient Descent,
and Levenberg Marquardt (LM), solve the non-convex opti-
mization problem and estimate a position that minimizes the
error term [7]. But they do not consider consecutive measure-
ments that span up trajectories over time. This limits accuracy.
Dong et al. [8] show that consecutive estimates from LM only
represent a statistical optimum under laboratory conditions and
hence are not applicable for real-world scenarios.

Decision tree, k-Nearest Neighbor, Support Vector Machine,
Neural Network, and other classification methods estimate
accurate positions. While they are popular for signal strength
data such as RSS [9] there is also work that builds on
ToF data [10]–[14]. By design neural networks automatically
extract relevant features that describe the absolute position.
They can also learn the effects of multipath propagation in
static scenarios, e.g., when some radio signals are reflected
by objects such as walls [15]. However, all these models
assume static environments, thus they cannot compensate
for dynamic changes of the environment, and cannot handle
dynamic situations that affect the ToF fingerprints. In dynamic
situations, track-ables move around and can create unknown
(unseen or unlearned) reflections that lead to wrong position
estimates.

Hybrid schemes combine the coarse position estimate of a
neural network with a post-processing in a KF [16], LM [7], or
Hidden Markov Model (HMM) [17]. However, both pre- and
post-processing suffer from complex parameterization needs as
well as from linear motion models that only respect short-time
causations (time between two filter updates) and thus are not
aware of long-term signal drift. Al-Mayyahi et al. [18] apply
LM to a neural network on simulated trajectories and show
that their simulation successfully optimizes vehicle control
parameters and reduces the absolute position error. While their
approach works in a lab, they do not account for motion.

The movement context is important as it describes the
relationship between consecutive positions over a (very) long
time. LSTMs [19] can model such relationships [20]–[22].
Yousefi et al. [23] investigate the performance of RNNs and

LSTMs on RSS fingerprints. They combine the coarse position
estimation from an LSTM with the fine positioning from an
HMM. While their accuracy outperforms previous approaches,
their HMM is constrained in its motion model (due to its a-
priori design). RNNs in combination with RF-based features
are investigated in [24] but only to determine the signal-to-
noise ratio of the tracking system. Thus, while it was not our
idea to use LSTMs to identify, learn, and reconstruct time
dependencies of information, we are the first to investigate
LSTMs on ToF from radio signals.

Hybrid KFs [4], [16], [25], [26] address the problem of
insufficient estimation of the process and measurement noise
with knowledge of the underlying sensor characteristics. Odel-
son et al. [27] can estimate the covariance matrices with
auto-covariance least-squares methods, but they need a large
sample size to converge and they only either estimate optimal
measurement and process noise covariances [5] or state tran-
sition functions [27], but not both. Unfortunately, the position
estimate of a KF depends on both. Coskun et al. [4] learn these
parameters from data samples in image-based pose estimation.
They use three stacked LSTMs layers to learn the non-
linear transition function. Two additional single LSTM layers
learn the process and measurement covariance matrices. This
approach outperforms all previous image-based positioning
methods. But although conceptually, their approach could also
be adapted to ToF-based positioning, learning every (compara-
bly) short-term motion type would need lots of computation-
intensive image data. Since they only use RGB data, their
approach does not work on small and limited information
sequences. On large sequences it only provides a short fraction
of repetitive movement types. Although Perez-Ortiz et al. [28]
and Iter et al. [22] argue that their KF-LSTM better generalizes
than standalone LSTMs (the implicit fusion of the past motion
states and the measurement update is said to be too complex
to be learned by a standalone LSTM), our LSTM does learn
contextual motion information to optimally model long-term
signal drift. As we derive accurate and precise positions our
motion model implicitly proves to be adequately modeled.

To create and design physically correct models of radio
channels we need to break down the radio-based communi-
cation pipeline into smaller segments. We show that we can
learn to cope with signal drift and outperform state-of-the-art
KFs. We use ideas from previous research and apply them to
a baseline problem: phase shift that leads to signal drift in
the long-term. Instead of applying end-to-end learning to the
complete pipeline we understand all pieces that are necessary
to describe the communication channel model.

III. FOUNDATIONS

In this paper we train a model end-to-end to estimate
a transmitters trajectory from a series of ToF values. We
formally describe the problem of trajectory estimation in
Sec. III-A and drifting ToF errors in Sec. III-B. We also briefly
introduce LSTMs in Sec. III-C.

A. Problem Description and Terminology
Consider a transmitter’s trajectory t = [p0, p1, · · · , pi, ...],

with i baseline positions pi that represent the ground truth
of the trajectory in Euclidean space (pi ∈ R3). i denotes

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on December 30,2021 at 20:24:26 UTC from IEEE Xplore. Restrictions apply.

2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 September 2018, Nantes, France

0 20 40 60 80 100

Time instance k

−1.0

−0.5

0.0

0.5

1.0
D

is
ta

nc
e
d

[m
]

truth
drift

KF Q1
KF Q2

measurements

Fig. 1. KFs with different Q-matrices applied to a drifting error. Agile filter
settings cause the KF to follow the drift (Q1). Rigid settings result in biased
estimates (Q2). More rigid settings end up in filter divergence.

the time step of a position. Baseline positions are obtained
from highly accurate reference systems. Each position pi has
a corresponding set of n ToF values di = [di0, di1, · · · , din],
with dij ∈ N that represent the position pi and that come
from n receivers with low accuracy for time step i. Hence,
for each time step i there is a baseline position pi and a
set of ToF values di. The notation pi−s:i stands for the slice
[pi-s, pi−s+1, · · · , pi−1, pi] of the trajectory t, analogously for
di−s:i, that spans a slice of time steps i − s to i, of the full
trajectory t.

Our goal is to fit a model M for position estimation
p̂i = M(di−s:i) at time step i that works on s most recently
observed sets of ToF values provided by the n receiver units.
For the training of M we also use the exact ground truth
positions pi−s:i to label the corresponding set of ToF values.

B. Drifting ToF Errors

In theory, trilateration can determine the correct position pi
from a set of exact ToF measurements di={di0, di1, di2}. In
practice, ToF data is inexact, their radii do not meet in a single
point, and the estimated position p̂i diverges significantly from
the true position. The problem is that the locating system in-
duces errors and artifacts to the signal processing pipeline. One
such artifact in every radio-based signal processing system is
the multipath propagation and signal drift.

Commonly, the multipath channel is characterized by a
discrete number of multipath components (MPC). In general,
the impulse response h of a wireless channel can be described
as a tapped delay line with L MPCs h =

∑L
l=1 al · δ(t − τl)

with al being the complex coefficient of the l-th MPC and τl
the delay of the MPCs resulting from scattering objects [29].

Recent statistical channel models [30] for a scattering
environment are commonly characterized by large-scale pa-
rameters (LSPs) like initial delays, complex coefficients, and
arrival angles for the individual MPCs. In order to ensure
spatial consistency, these values have to be updated along
the track of the moving object. Otherwise, if one draws a
new channel realization for every position on the track, the
estimates of the channel coefficients do not fit the real ones. To
avoid such effects, a trajectory is divided into segments (of up
to several meters). Within a segment the channel is assumed to
be wide sense stationary (WSS), i.e., the LSPs do not change
significantly and leave the scattering environment unchanged.
However, due to small-scale motion the path delays change.
This causes a change in the complex channel coefficients.

Changes in the phase of the MPCs inherently lead to drifting
ToF errors [30].

Moving along a segment causes ToF estimates to drift. This
phenomenon is commonly observed in ToF-based systems
[31]. In consequence, we cannot describe the ToF errors by a
zero-mean probability density function (PDF). On short-term
scale, the ToF errors are biased and drift, i.e., ToF errors follow
a random walk-like motion which is overlaid with the true
motion of the transmitter. The challenge is to separate these
motions. Fig. 1 illustrates the application of KFs with different
parameters on measurements with drifting ToF errors.

C. Long-Short Term Memory (LSTM) Networks

Neural networks such as MultiLayer Perceptrons (MLPs)
are composed of an input layer X , one or more hidden
layers H , and an output layer Y . Input signals propagate
in forward direction through the network: a loss-function
compares the output to the ground truth label to compute the
error; error signals propagate backwards through the network;
adjusted weights reduce the error. Positioning applications
often use variants such as Radial Basis Function Networks
(RBFN) [32]. However, all MLP-variants can only take a
fixed input sequence length of fingerprints of ToF values di
at time step i to predict p̂i and lack the ability to describe
the relationship of time- and context-sensitive consecutive
position(s) of a trajectory, as they miss the recurrent feature
(i.e., ability to consider input and previous state). There is
no way to include latent motion characteristics that encode a
sequence of measurements.

Motion is a temporal-dynamic process that depends on
different factors like acceleration, velocity, and direction which
we can only observe indirectly from the sets of ToF values di
and their corresponding positions pi. Moreover, these values
are also noisy and have drifting signal artifacts. Therefore, the
model M that we aim to fit has to capture the latent dynamics
of these factors from the stream of ToF and position data.

While we could design an MLP that uses a stack of
past measurements to predict p̂i, Recurrent Neural Networks
(RNNs) are a better choice [33]. RNNs are a class of neural
networks that process sequences of data (here: consecutive
sets of ToF measurements) and have successfully been ap-
plied to various time- and context-sensitive tasks. RNNs have
persistent internal states ci (the cell’s memory state) that get
updated from the input sequence Xi and that are carried across
transitions, e.g., from Hi to Hi+1. That enables the model to
capture dynamic behavior from the input data, and to use it
to predict the output Yi. The following equations describe the
updates of a RNNs cell state whenever new input data Xi

arrives:

Hi = g(Wh ·Hi−1 +Win ·Xi +Bh),

Yi = a(Wo ·Hi +Bo).

Here, g(·) and a(·) are (non-linear) activation functions, W
are shared weight matrices, and B are bias terms. But since
RNNs suffer from vanishing or exploding gradients [34] in
practice, they hardly recognize long-range dependencies.

LSTM networks [19] avoid this problem as they replace
the computation of Hi with a cell that includes three gates: a

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on December 30,2021 at 20:24:26 UTC from IEEE Xplore. Restrictions apply.

2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 September 2018, Nantes, France

σ

σ σ

× ×

×

ii
ic

if

io

l,i-1H

l,i+1H

l,iH

φ φ

l+1,iH

iX
l-1,iH

iY

Fig. 2. Basic LSTM memory cell.

forget gate fi, an input gate ii, and an output gate oi at time
step i. These cells explicitly model the flow of information
between consecutive time steps. Fig. 2 depicts the internal
structure of a basic LSTM cell. Here σ represents the sigmoid
gate activation function (forget fi, input ii, output oi), φ is the
tanh input/output activation function, and × is a multiplication
operator. The cell’s memory state ci gets updated in every step
with information from both the forget and the input gate. Hi

is the new state, extracted through the output gate from the
memory cell ci.

Information flows through the LSTM from left to right and
from bottom to top. Initial input Xi goes into the lowest LSTM
layer l=0 (Hl=0,i). Each cell Hl,i feeds also the adjacent cell
on the same layer Hl,i+1 from the side and the adjacent cell
on the next higher layer Hl+1,i from the bottom.

During the training phase, the model M learns to leverage
latent motion characteristics and trajectories from a consecu-
tive sequence of positions pi and their corresponding sets of
ToF values di to provide an accurate and precise estimation of
a transmitter’s current position and trajectory on sets of raw
ToF measurements during the live phase.

The following equations define the forward-pass of an
LSTM cell for the hidden state Hi at step i. U are more shared
weight matrices and × is the element-wise multiplication
operator from Fig. 2.

ii = σ (WiXi + UiHi−1 +Bi)

oi = σ (WoXi + UoHi−1 +Bo)

fi = σ (WfXi + UfHi−1 +Bf)

ci = fi × ci−1 + ii × tanh (WcXi + UcHi−1 +Bc)

Hi = oi × tanh (ci)

We define the width of a model by the size of an LSTM
cell. The size of a single cell is defined by the number of
possible weights and biases that each cell can handle. In Fig. 2
every blob (function, operator, gate, or cell) represents a fixed
denoted functionality but also embodies a stack of weights and
biases according to the cell size, i.e., a cell size of 128 denotes
that each blob in the cell holds 128 weights and 128 biases.

IV. PROPOSED LSTM MODEL

Fig. 3 shows our proposed LSTM model. For simplification
for every time step i (column) we left out both the drop-out
layers between each of the hidden layers H0 to Hl and also

time steps i

de
pt

h

Xi-s Xi-s+1

Yi-s

Hl,i-s

Yi-s+1

Hl,i-s+1

Yi-1 Yi

Hl,i-1 Hl,i

Xi-1 Xi

H0,i-s H0,i-s+1 H0,i-1 H0,i

…

…

…

…

…

…

… ………

Fig. 3. Proposed unrolled many-to-many LSTM model architecture with l
hidden LSTM layers H for a slice of s that covers i time steps. The inputs
X feed the hidden layers with sets of ToF measurements. The predicted
positions are in Y . (Fully connected layers and dropout layers are not outlined
explicitly).

left the dense, fully-connected classification layer just before
the output layer Y .

During the training phase, the model takes slices of consec-
utive trajectory positions pi−s:i and their corresponding sets
of ToF values di−s:i as input. The sequence length s defines
how many of such consecutive bundles the model processes
in each iteration. The longer the sequence the more motion
dependencies the model learns to interpret correctly but the
more complex the model gets. The model not only learns
how to obtain a single position from a single set of ToF
values but also learns to predict consecutive positions from
sets of consecutive ToF values. While Xi represents an input
set at times step i, the resulting position estimation is Yi.
With a randomly initialized initial state H0, the model has
no prior knowledge about the motion and consequently learns
to estimate the position from local information. As output Y
the model estimates the transmitter’s current positions p̂i.

Data Preprocessing. Machine learning models suffer from
data with high variance and deviation. A numerical tiny (local)
gradient or weight explodes if a huge value is fed to the
neuron. On the other hand, a large weight vanishes with very
small update values. As such models perform best when the
input data has zero mean and unit variance we normalize
the dataset to [−1; +1] by subtracting the mean and scaling
with the standard deviation over the training sets for each
individual feature (ToF value) [35]. Once trained, the model
can be applied to unseen ToF data.

For the training of M , we slice the complete trajectory into
consecutive sequences of length s and create sub-trajectories
starting from random offsets in the trajectory (like a slid-
ing window). (Note, in the live phase the model predicts
consecutive positions pi−s:i only on consecutive sets of ToF
measurements di−s:i).

Data Batching. Fig. 4 provides a detailed insight of our
input data batching method. In total, we have batches (inde-
pendent groups of data) G for each time step in the sequence.
A batch consists of j groups gj,i at each time step from i− s
to i. Each group embodies the position pi (only during the
training phase) and the corresponding ToF values di (during
the training and live phases). Each group g in a batch G

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on December 30,2021 at 20:24:26 UTC from IEEE Xplore. Restrictions apply.

2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 September 2018, Nantes, France

Xi-s Xi-s+1 Xi-1 Xi

GXi-s

H0,i-s H0,i-s+1 H0,i-1 H0,i

…

…
{

GXi

{

gj,Xi-s
di0 dindi1

{

i-s
p

{di-s

g…,Xi-s
di0 dindi1

{

i-s
p

{

j

g0,Xi-s
di0 dindi1

{

i-s
p

t :j

t :0

Fig. 4. Data preparation process that prepares batches G of ToF values d at
each time step i and feeds them as input Xi to the first hidden layer H0 of
our LSTM network.

represents a position of a different training trajectory tj , i.e.,
our batch contains data at time step i from all our recorded
training trajectories. (Note during the live phase we only feed
GXi−s:i

each with a single gj=0,Xi−s:i to M). The three rows
of small boxes in Fig. 4 show a simple example of how our
batches G look like for each single time step from i− s to i.

We split a sequence in i − s : i batches GXi
that hold

j groups gj,Xi−s
(during training j denotes the number of

different training trajectories; during the live phase j is 1).
Each group gi,X (group g at time step i with input X; X
contains either pi and di during the training, or only di during
the live phase) holds a set of ToF values di that describe
a position pi from a trajectory tj . The number of different
training trajectories j defines the size of the batch G, with
GXi−s

={g0,Xi−s
, g1,Xi−s

, ..., gj,Xi−s
}. The sequence length

s defines the number of time steps that our model takes into
account to predict new positions (i.e., how many ToF and
position sets are fed to the network) per iteration. Thus, each
sequence holds s batches G and each batch G holds j groups g
of n ToF values d. Each gj in G represents an independent part
of the motion trajectory so that the model learns different time-
based motion relations. Such time-dependent relations include
changes in e.g. acceleration, velocity, displacement, trajectory,
and other motion types. An increase in depth, i.e., the number
of layers, yields an increase of variety of different time-based

Yi-s Yi-s+1 Yi-1 Yi

r0,xi-sx y z

R xi-s

Hl,i-s Hl,i-s+1 Hl,i-1 Hl,i

…

…

{

j

{
{

r…,xi-sx y z

{

rj,xi-sx y z

{

t :0

t :j

R xi

Fig. 5. Fully connected layer that condensates the output of the last hidden
layer Hl of our LSTM model to Y and returns 3-dimensional absolute
positions ˆpi−s:i.

characteristics, i.e., the deeper the network the more time-
dependent relations can be modeled by the network [36].

Feed. We feed Xi (training: sets of ToF values and their
corresponding reference positions; live: sets of ToF values)
sequentially to the LSTM-cells, see Fig. 4. E.g., with a
sequence length of s = 200 we feed 200 LSTM-cells of the first
hidden layer H0,i−s:i with inputs Xi−s:i. With each step i, the
state Hi−s:i is updated and accumulates information about the
changes in the positions. We use a larger cell size (e.g. 256
neurons), to handle more complex problems [37]. After the
complete sequence has been processed the final LSTM state
Hi contains a representation of the observed motion in LSTM
state space.

Dense. In a final step, the model uses a fully connected
layer to dense the final states Hi−s:i to the output Yi−s:i
that holds the transmitter’s positions p̂i−s:i, see Fig. 5. Ac-
cording to the number j of blocks g in the batch G the
dense layer returns the same number j of results r (here
positions with x,y,z coordinates) in the resulting batch R, with
RXi−s

= {r0,Xi−s
, r1,Xi−s

, ..., rj,Xi−s
}. We take the latest

element rj,Xi−s as a position estimate for p̂i.

V. SETUP OF THE EXPERIMENTS

Our experiments compare a KF model with our LSTM ap-
proach on both synthetic (Sec. V-A) and real-world (Sec. V-B)
datasets with drifting ToF measurements. The datasets com-
prise multiple trajectories t, each of which is represented
by a stream of ToF measurements d from n receivers and
the corresponding positions p. We split both datasets into a
training set (90%) and a test set (10%). Sec. V-C specifies the
configuration of our KF and LSTM models.

A. Simulation Environment
To adequately model the signal propagation effects of the

wireless channel we used QuaDRiGa [30] as it offers charac-
teristics that apply for typical indoor propagation scenarios,
i.e., multipath effects. We briefly outline the procedure of
channel simulation here.

0

20

40

60

80

100

120

D
el

ay
τ

[n
s]

0

10

20

30

D
is

ta
nc

e
d

[m
]

0 20 40 60 80 100

Time instance k

−2.5

0.0

2.5

D
el

ay
E

rr
or
τ e

[n
s]

−1

0

1

D
is

ta
nc

e
E

rr
or
d
e

[m
]

Fig. 6. Drifting in a multipath environment. The channel impulse response is
evolving over time. Gradual change in delay and phases leads to biased ToF
estimates. ToF errors in short-term context are biased. Hence, ToF errors are
not to be characterized by a zero-mean PDF as demanded by KFs.

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on December 30,2021 at 20:24:26 UTC from IEEE Xplore. Restrictions apply.

2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 September 2018, Nantes, France

From LSPs with L dominant paths, the delay spread, and
the angular spread, we construct a bandwidth-limited channel
impulse response (CIR) to estimate the ToF values. To do this
we (1) draw delays τl, (2) compute their powers Pl, (3) draw
arrival angles φl, and (4) combine these values to channel
coefficients al. The most essential channel parameters used
in our simulations are: number of MPCs L = 6, RMS delay
spread στ = 10 ns, and the Rician K-factor K = 0.5. For ToF
estimation we used a bandwidth of B = 80 MHz which is
close to our real-world setup [38].

Fig. 6 depicts how a typical indoor channel evolves over
time, see also Fig. 1, when a mobile tag moves along a circle
with a radius of 10 m (line-of-sight) and a receiver placed in
the center of the circle. While there are parts of the signal that
arrive with 30 ns delay there is also a significant part that has
a higher delay. This delay also changes while the transmitter
moves through the multipath setting. In the lower part of Fig. 6
we see the resulting ToF errors. Obviously, drifting causes
a slowly changing bias to the ToF values. (Fig. 6 shows a
random walk-like motion).

Our simulation framework generates the synthetic datasets
Dsd and Drd with a noisy Gaussian distribution (mean µ =
0.0 and a standard deviation σ = 0.1). Our dataset Dsd lets
a transmitter follow along a sine wave walk (A · sin(2π nw +
Φ) + D, with A = 1, a data length of n = 10,000 samples, a
wave length of w = 1,000 samples, Φ = 0, and D = 3), see
’Truth’ in Fig. 8(a), and generate a stream of ToF values as
the transmitter moves along the sinusoid with an (ideal) static
ToF of 3 ns, i.e., 1 m distance. Instead, Drd lets the transmitter
follow along a random walk (cumulative sum of n = 10,000
randomly variates with scale σ = 0.1, that we limit to [2; 4]
m). Besides a Gaussian noise we add a long-term signal drift,
see ’Meas. Drift’ in Fig. 8(a), in the form of Dsd a sinusoidal
(same parameters, but A = 2) or Drd a random walk (same
parameters, but limit [1; 5] m), see ’Meas. Drift’ in Fig. 8(b).

We generated 100 synthetic trajectories per drifting parame-
ter: with sinusoidal drift (Dsd), with random walk drift (Drd).
For each of the configurations we generate 100 trajectories
with 10,000 positions each. These input data contains 1-
dimensional ToF measurements and their corresponding po-
sition, i.e., the transmitter’s distance to the antenna over time.

B. Real-World Environment

Fig. 7(a) shows our real-world indoor tracking area. We
capture ToF (ToA) data with a remotely controlled Segway
RMP-210 mobile robot, see Fig. 7(b). For 220 times the
robot follows a predefined zig-zag trajectory (see Fig. 8(c))
at a maximal speed of 12 km/h and a maximal accelera-
tion of 2 m/s2. The resulting dataset Drw holds about 504
minutes of motion data, consisting of 220 trajectories with
1375 ToA values each taken from a radio-based locating
system RedFIR [38], [39] with 12 time-synchronized antenna
units at fixed locations. The locating system operates in the
2.4 GHz ISM band and uses around 80 MHz bandwidth.
The miniaturized transmitters generate short broadband signal
bursts at 10 positions per second. We also record the ground
truth trajectory with a sub-millimeter precise optical laser-
based Nikon iGPS system. In a data pre-processing step we

(a) Top-view onto our 40 m × 40 m indoor
RF-tracking area.

(b) Autonomous wheeled
Segway mobile robot.

Fig. 7. Setup of our experiment.

linearly interpolate intermediate positions (10 Hz RedFIR vs.
30 Hz iGPS) where necessary.

C. Model Configuration and Training

Kalman filter model. We use a classic linear KF model
as an optimal state estimator under the assumption of drift-
free signals Dwo. This Bayesian model describes the latent
state evolution, i.e., linear motion transition function l(t), the
emission distribution, i.e., measurement noise, and internal
action effects, i.e., a process noise, as linear functions that are
perturbed by Gaussian noise. We initially parameterize the KF
with a start state x0 = 0, a covariance P = 1, process noise
Q = 0.1, measurement noise R = σ = 0.1, and a transition
function l(t) that models a constant velocity. By clearance if
we have empirical knowledge we can configure an optimal KF
(with x0 = 0 and R=σ = 0.1) that perfectly fits the input data
and then this model is a perfect optimizer for the drift-free
dataset Dwo.

To evaluate the KF model on the drift-free datasets we
sequentially apply a set of ToF/ToA data to the model to
estimate a delay (for the synthetic data) or an absolute position
(for the real world data). We then compare this position with
the baseline position that represents the ToF/ToA inputs and
derive the CEP50 and CEP95 metric errors, i.e., the median
error and the 95% percentile in the horizontal plane.

LSTM model. As our LSTM model has non-linear acti-
vation functions by clearance this model may be a candidate
that perfectly models all of our datasets, i.e., Dsd, Drd, Dwo.
With a grid search [40] we find a proper model architecture,
i.e., we train different architectures and vary the number of
layers, the width, the batch size, sequence length, i.e., number
of time steps, optimizers, amount of drop-out per layer, and the
effect of peepholes. See Table. I for details and the searched
configuration that is a good trade-off between computational
effort and performance: the batch size is as large as the
number of various trajectories =100, epochs ≥1000, layers

TABLE I
RESULTS OF OUR GRID SEARCH FOR LSTM PARAMETERS.

Test Types Settings Selection

Batch size [1, 2, 5, 10, 20, 50, 100, 200] 100
Epoches [10, 50, 100, 1000, 2000] 1000
Depth/Layers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20] 4
Sequence length [1, 2, 5, 10, 20, 50, 100, 200] 20
Optimizer [SGD, RMSprop, Adagrad, Adam] Adam
Drop-out [0.0, 0.0001, 0.001, 0.01, 0.1] 0.0
Width/Cell size [1, 8, 16, 32, 64, 128, 256, 512] 256
Peepholes [On, Off] Off
Learning rate [0.00001, 0.0001, 0.001, 0.01, 0.1, 0.2, 0.3] 0.0001
Activation functions [linear, softmax, tanh, relu, sigmoid] tanh
Weight Initialization [uniform, normal, zero] normal

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on December 30,2021 at 20:24:26 UTC from IEEE Xplore. Restrictions apply.

2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 September 2018, Nantes, France

0 200 400 600 800 1000
Time [ms]

1

2

3

4

5

D
is

ta
nc

e
[m

]
Truth
Drift
Meas. Drift
KF (Avg.)
KF
LSTM

3

6

9

12

15

D
el

ay
 [n

s]

(a) Synthetic sinusoidal drifting dataset Dsd.

0 200 400 600 800 1000
Time [ms]

1

2

3

4

5

D
is

ta
nc

e
[m

]

Truth
Drift
Meas. Drift
KF (Avg.)
KF
LSTM

3

6

9

12

15

D
el

ay
 [n

s]

(b) Synthetic random-walk dataset Drd.

15 20 25 30 35
X [m]

5

10

15

20

25

Y
 [m

]

Truth
Meas.
KF (Avg.)
KF
LSTM

(c) Real-world dataset Drw .

Fig. 8. ToF distance and delay errors of our datasets (black: ground truth, red: measurements with drift, green: our LSTM model, blue: our KF).

≥4, sequence length ≥20, optimizer is Adam, no drop-out,
width ≥256, no peepholes, learning rate ≤0.001, sigmoid and
tanh as activation and uniform weights.

We train our LSTM model on samples generated from our
trajectories using a quasi-sliding window approach over the
input dataset. For every input step Xi we create a sample
dataset by extracting a slice of size s from the trajectory. The
slice is split into batches of independent trajectory groups.
Hence, every batch G and their respective groups gj represent
a set of consecutive ToF values and their corresponding posi-
tion. Note, every sequence that is extracted from a trajectory
starts at varying start offsets. Hence, we guarantee that our
model learns completely independent trajectories. To update
the weights of our LSTM we calculate the loss, i.e., the
convergence error between the predicted position on the ToF
values and the baseline position. We use the mean-squared
error (MSE) loss function LMSE = 1

n

∑n
i=1(xi − x̂i)2.

VI. RESULTS

To compare the results of our KF and LSTM models, on
both the drift-affected synthetic Dsd, Drd and real-world Drw

datasets we calculate error metrics against the ground truth. We
use the mean average error (MAE) of the estimated delay for
the synthetic data and the CEP50,95, i.e., the median positional
error and its 95th percentile on the horizontal plane, of the 2-
dimensional real-world dataset.

A. Synthetic Datasets
Both of our drifting datasets are 1-dimensional and thus

the MAE metrics only show the accuracy of the models in
1-dimension (position translates to distance over time).

Sinusoidal Drift. Fig. 8(a) shows 1000 ms of the results for
the synthetic dataset with the sinusoidal drift Dsd. The black
line shows the ground truth (sinusoid with zero delay errors).
The red dots are the drifting ToF measurements. They follow
long-term (sinusoidal) drift, i.e., they suffer from the sinusoidal
drift that comes on top of the sinusoidal signal, and are
additionally impaired by additive white Gaussian noise. The
blue dotted line(s) show(s) the estimations of the KF. While
the KF smooths out the Gaussian noise it closely follows the
drift, as this yields the optimal estimation state. Instead, KF
(Avg.) follows its internal state, smooths over 50 samples, and
performs even worse. KF results in an MAE of 2.13 ns, i.e., a
distance measurement error of 64 cm. Since our LSTM fits the

line of ground truth values, it not only clearly outperforms the
state-of-the-art KF model but also follows the real ToF values
very closely, which in total results in an MAE of only 0.029
ns or 0.009 cm.

Random Walk Drift. Fig. 8(b) shows the results for the
synthetic random walk dataset with the random walk drift Drd.
Again, the KF follows the drift in the measurements while it
smooths out the random noise or ignores the measurements
completely (KF (Avg.)). The KF estimates have an MAE of
1.72 ns or 51 cm. Again our LSTM approximates the real ToF
values closely and yields a much smaller MAE of 0.12 ns or
3.6 cm.

The results on the synthetic datasets show that in both
scenarios our LSTM clearly outperforms the KF and yields
close-to-optimal estimations.

B. Real-World Dataset

We run both the KF and the LSTM on our real-world dataset
Drw. On the position estimates, i.e., ’Meas.’ in Fig. 8(c), we
calculate the CEP50 and the CEP95 positional error of both
models in the 2-dimensional horizontal plane. We used the
Bancroft algorithm [41] to estimate a position from a set of
corresponding ToFs. Fig. 8(c) shows the results.

Overall, the LSTM (with a CEP50 of 4.08 cm and a CEP95

of 12.93 cm) approximates the real position considerably better
than the KF (with a CEP50 of 30.56 cm and a CEP95 of
35.34 cm). Again, the KF follows the drifting ToF values as
it wriggles around the baseline trajectory. Moreover, the KF
also under-/overshoots whenever the movement changes in the
corners. Here the KFs takes a long time to recalibrate. In
contrast, our LSTM not only closely approximates the real
trajectory on the straight lines but also performs well in the
corners.

C. Discussion

It is likely that our LSTM model can handle time-
dependencies because of depth (number of hidden layers) and
the size of the slice of time steps that it takes into account.
The deeper a network the more time-dependencies, and thus
motion derivatives such as acceleration, velocity, displacement,
orientation, and intention it can handle. Throughout our experi-
ments the more shallow models do not learn and generalize
motion behavior as well. Instead they mostly map the inputs to

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on December 30,2021 at 20:24:26 UTC from IEEE Xplore. Restrictions apply.

2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 September 2018, Nantes, France

the outputs. We successfully applied and validated our method
on rectangular, sinusoidal, elliptical, and arbitrary trajectories.

VII. CONCLUSION

The presented RNN with a stacked LSTM model can
(after being trained) predict optimal consecutive positions from
raw and drift-affected ToF measurements provided by a low
accuracy locating systems.

While we show that our model learns to cope with time
dependent errors such as multipath and drift, we are the first to
also present novel steps towards understanding, interpreting,
and context learning in a single position estimation model.
The presented LSTM outperforms state-of-the-art KFs on both
synthetically generated and real-world trajectories that include
drifting ToF measurement errors.

ACKNOWLEDGMENTS

This work was supported by the Bavarian Ministry for
Economic Affairs, Infrastructure, Transport and Technology
and the Embedded Systems Initiative (ESI).

REFERENCES

[1] S. Särkkä, Bayesian Filtering and Smoothing. Cambridge University
Press, 2013.

[2] D. I. Tapia, R. S. Alonso, S. Rodriguez, F. de la Prieta, J. M. Corchado,
and J. Bajo, “Implementing a real-time locating system based on wireless
sensor networks and artificial neural networks to mitigate the multipath
effect,” in Proc. Intl. Conf. Information Fusion, (Chicago, IL), pp. 1–8,
2011.

[3] P. Torteeka, X. Chundi, and Y. Dongkai, “Hybrid technique for indoor
positioning system based on wi-fi received signal strength indication,”
in Proc. Intl. Conf. Indoor Positioning and Indoor Navigation, (Busan,
Korea), pp. 48–57, 2014.

[4] H. Coskun, F. Achilles, R. DiPietro, N. Navab, and F. Tombari, “Long
short-term memory kalman filters: Recurrent neural estimators for pose
regularization,” arXiv preprint arXiv:1708.01885, 2017.

[5] “A generalized autocovariance least-squares method for kalman filter
tuning,” J. Process Control, vol. 18, no. 7, pp. 769 – 779, 2008.

[6] S. Särkkä, A. Vehtari, and J. Lampinen, “Rao-blackwellized particle
filter for multiple target tracking,” Information Fusion, vol. 8, no. 1,
pp. 2–15, 2007.

[7] C.-S. Chen, “Artificial neural network for location estimation in wireless
communication systems,” Sensors, vol. 12, no. 3, pp. 2798–2817, 2012.

[8] L. Dong and F. L. Severance, “Position estimation with moving beacons
in wireless sensor networks,” in Proc. Wireless Communications and
Networking Conf., (Hong Kong, China), pp. 2317–2321, 2007.

[9] H. Dai, H.-B. Liu, X.-S. Xing, and Y. Jin, “Indoor positioning algorithm
based on parallel multilayer neural network,” in Proc. Intl. Conf.
Information System and Artificial Intelligence, (Hong Kong, China),
pp. 356–360, 2016.

[10] P. Singh and S. Agrawal, “Tdoa based node localization in wsn using
neural networks,” in Proc. Intl. Conf. Communication Systems and
Network Technologies, (Bangalore, India), pp. 400–404, 2013.

[11] H. Zhu, B. Huang, Y. Tanabe, and T. Baba, “Local positioning with
artificial neural network and time of arrival technique,” (Dalian, China),
pp. 509–509, 2008.

[12] H. Dai, H. Liu, X.-S. Xing, and Y. Jin, “Indoor positioning algorithm
based on parallel multilayer neural network,” (Hong Kong, China),
pp. 356–360, 2016.

[13] D. I. Tapia, R. S. Alonso, S. Rodrı́guez, F. de la Prieta, J. M. Corchado,
and J. Bajo, “Implementing a real-time locating system based on wireless
sensor networks and artificial neural networks to mitigate the multipath
effect,” in Proc. 14th Intl. Conf. Information Fusion, (Chicago, IL),
pp. 1–8, 2011.

[14] W. Zhang, K. Liu, W. Zhang, Y. Zhang, and J. Gu, “Deep neural
networks for wireless localization in indoor and outdoor environments,”
Neurocomputing, vol. 194, pp. 279 – 287, 2016.

[15] A. Niitsoo, T. Edelhäußer, and C. Mutschler, “Convolutional neural
networks for position estimation in tdoa-based locating systems,” in
Proc. 9th Intl. Conf. Indoor Positioning and Indoor Navigation, (Nantes,
France), pp. 1–8, 2018.

[16] S. D.-C. Shashua and S. Mannor, “Deep robust kalman filter,” arXiv
preprint arXiv:1703.02310, 2017.

[17] W. Zhang, K. Liu, W. Zhang, Y. Zhang, and J. Gu, “Deep neural
networks for wireless localization in indoor and outdoor environments,”
Neurocomputing, vol. 194, pp. 279–287, 2016.

[18] A. Al-Mayyahi, W. Wang, and P. Birch, “Levenberg-marquardt opti-
mised neural networks for trajectory tracking of autonomous ground
vehicles,” Intl. J. Mechatronics and Automation, vol. 5, no. 2, pp. 140–
153, 2015.

[19] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–80, 1997.

[20] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social lstm: Human trajectory prediction in crowded
spaces,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition,
(Las Vegas, NV), pp. 961–971, 2016.

[21] A. Milan, S. H. Rezatofighi, A. R. Dick, I. D. Reid, and K. Schindler,
“Online multi-target tracking using recurrent neural networks.,” AAAI,
pp. 4225–4232, 2017.

[22] D. Iter, J. Kuck, P. Zhuang, and C. M. Learning, “Target tracking with
kalman filtering, knn and lstms,” 2016.

[23] S. Yousefi, H. Narui, S. Dayal, S. Ermon, and S. Valaee, “A survey
on behavior recognition using wifi channel state information,” IEEE
Communications Magazine, vol. 55, no. 10, pp. 98–104, 2017.

[24] L. Bo, Q.-z. LIU, Z.-d. YIN, and Z.-l. WU, “A novel snr estimator
for ds-uwb wireless sensor network,” Trans. Computer Science and
Engineering, no. cmee, 2017.

[25] M. Wei-Lung, “Gps interference mitigation using derivative-free kalman
filter-based rnn,” Radioengineering, vol. 25, no. 3, p. 519, 2016.

[26] R. G. Krishnan, U. Shalit, and D. Sontag, “Deep kalman filters,” arXiv
preprint arXiv:1511.05121, 2015.

[27] B. J. Odelson, M. R. Rajamani, and J. B. Rawlings, “A new autocovari-
ance least-squares method for estimating noise covariances,” Automatica,
vol. 42, no. 2, pp. 303–308, 2006.

[28] J. A. Pérez-Ortiz, F. A. Gers, D. Eck, and J. Schmidhuber, “Kalman
filters improve lstm network performance in problems unsolvable by
traditional recurrent nets,” Neural Networks, vol. 16, no. 2, pp. 241–
250, 2003.

[29] J. Proakis, Digital communications. McGraw-Hill, Boston, 2008.
[30] S. Jaeckel, L. Raschkowski, K. Börner, and L. Thiele, “Quadriga: A 3-d

multi-cell channel model with time evolution for enabling virtual field
trials,” IEEE Trans. Antennas and Propagation, vol. 62, no. 6, pp. 3242–
3256, 2014.

[31] T. Nowak and A. Eidloth, “Dynamic multipath mitigation applying
unscented kalman filters in local positioning systems,” in Proc. European
Wireless Technology Conf., (Paris, France), pp. 9–12, 2010.

[32] P. Singh and S. Agrawal, “Tdoa based node localization in wsn using
neural networks,” in Proc. Intl. Conf. Communication Systems and
Network Technologies, (Gwalior, India), pp. 400–404, 2013.

[33] J. Dai, P. Zhang, J. Mazumdar, R. G. Harley, and G. Venayagamoorthy,
“A comparison of mlp, rnn and esn in determining harmonic contribu-
tions from nonlinear loads,” in Proc. Conf. Industrial Electronics Society,
(Orlando, FL), pp. 3025–3032, 2008.

[34] Y. Bengio, P. Y. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,” IEEE Trans. Neural Networks,
vol. 5, no. 2, pp. 157–66, 1994.

[35] K. Cho, B. van Merrienboer, aglar Gülehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” in Proc. Conf.
Empirical Methods in Natural Language Processing, (Doha, Qatar),
pp. 1724–1734, 2014.

[36] M. Hermans and B. Schrauwen, “Training and analysing deep recurrent
neural networks,” in Advances in neural information processing systems,
pp. 190–198, MIT Press, 2013.

[37] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How to construct
deep recurrent neural networks,” arXiv preprint arXiv:1312.6026, 2013.

[38] T. v. d. Grün, N. Franke, D. Wolf, N. Witt, and A. Eidloth, “A
real-time tracking system for football match and training analysis,” in
Microelectronic Systems, pp. 199–212, Springer Berlin, 2011.

[39] C. Mutschler, H. Ziekow, and Z. Jerzak, “The debs 2013 grand chal-
lenge,” Proc. 7th ACM Intl. Conf. Distributed event-based systems,
pp. 54–57, 2013.

[40] N. Reimers and I. Gurevych, “Optimal hyperparameters for deep lstm-
networks for sequence labeling tasks,” arXiv preprint arXiv:1707.06799,
2017.

[41] S. Bancroft, “An algebraic solution of the gps equations,” IEEE Trans.
Aerospace and Electronic Systems, no. 1, pp. 56–59, 1985.

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on December 30,2021 at 20:24:26 UTC from IEEE Xplore. Restrictions apply.

