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Abstract—With free movement and multi-user capabilities,
there is demand to open up Virtual Reality (VR) for large spaces.
However, the cost of accurate camera-based tracking grows with
the size of the space and the number of users. No-pose (NP)
tracking is cheaper, but so far it cannot accurately and stably
estimate the yaw orientation of the user’s head in the long-run.

Our novel yaw orientation estimation combines a single inertial
sensor located at the human’s head with inaccurate positional
tracking. We exploit that humans tend to walk in their viewing
direction and that they also tolerate some orientation drift. We
classify head and body motion and estimate heading drift to
enable low-cost long-time stable head orientation in NP tracking
on 100 m × 100 m. Our evaluation shows that we estimate
heading reasonably well.

I. INTRODUCTION

VR drives innovation in applications for theme parks, mu-
seums, architecture, training, simulation, etc. They all can
benefit from multi-user interaction, from areas beyond 20 m
× 20 m, and from natural movement without motion sickness,
but today’s Simultaneous Localization and Mapping (SLAM)
based pose estimation only achieves precise and drift-free
tracking under restricting conditions (e.g., small rooms, static
scenes/no or only a few moving objects, and homogeneous
lightning) [1]. Moreover, today’s state-of-the-art VR systems
for small areas use camera-based motion tracking. Tracking
accuracy decreases and cost grows strongly both with the
camera resolution and the size of the area, and tracking more
users needs more cameras to avoid occlusion.

Conceptually, no-pose (NP) tracking systems based on
Ultra-wideband (UWB) that track single positions instead of
the full pose (position and orientation) are cheaper and can
work with larger tracking areas and more users. In contrast
to camera-based tracking of the full pose, they are inaccurate
and their positions cannot be combined to derive the pose. The
absolute head orientation must thus be estimated separately.

Current low-cost Head-Mounted Display (HMD) units (with
their inertial measurement units (IMU) such as accelerometers,
gyroscopes, and their magnetometers) can be used to estimate
head orientation even with lower latency and better immer-
sion than camera-based systems. But, while it is possible to
estimate the correct absolute pitch and roll orientation with
accelerometer and gyroscope sensors, in practice an IMU-
based estimation of the yaw orientation, i.e., of the rotation
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Fig. 1. Real (top) and virtual world (middle and bottom). Real head/view
direction ~r, virtual view direction ~v. Middle: no drift. Bottom: sensor drift of
45° to the right. Although in the bottom row the user still looks and walks
into the same view direction ~r as in the top and middle rows, his/her virtual
view is drifted by 45° to the right. Hence, instead of virtually walking towards
the blue pillar s/he walks sidewards and approaches the orange pillar in the
VR. The user can either rotate the head by 45° or walk sidewards to adjust
~r to ~v, or both. If the virtual view ~v diverges from the real view ~r, a user is
affected by motion sickness that grows with the offset between ~v and ~r.

angle around the vertical body axis, is still inaccurate. First,
magnetometers are unreliable in many indoor and magnetic
environments and provide a wrong absolute yaw orienta-
tion [2]. Second, dead reckoning based on relative IMU data
leads to drift and (after a while) to a wrong yaw orientation
estimation [3]. Third, state-of-the-art filters fail to provide
reliable motion direction estimates on noisy low-cost sensors
as they require either noise-free accurate sensor models or
military-grade sensors [4]. It is virtually impossible to tune the
parameters of the Kalman filter, i.e., Kalman gain or process-
and measurement-noise, so that they correctly describe the
dynamics of sensor biases, human head motion, and the
resulting non-linearities [5]. Even methods that stabilize a
state-of-the-art Kalman filter based on known sensor states,
e.g., shoe-mounted sensors [3] or context based hand-held
sensors, fail to estimate the absolute yaw orientation of the
head [6].

A wrong orientation estimation results in a mismatch of the
real world and the VR display. The upper row in Fig. 1 shows
the view of a user who walks straight ahead with his/her head
oriented in the direction of the movement. In the VR (middle
row of Fig. 1) this movement should lead through the clearance
between the red and orange pillars. However, under drift (the
bottom row shows a 45° yaw drift/offset) the same movement

978-1-5386-5635-8/18/$31.00 ©2018 IEEE

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on December 30,2021 at 20:23:41 UTC from IEEE Xplore.  Restrictions apply. 



2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 September 2018, Nantes, France

HMD

ψ’ ≈ 0°

r v

(a) No drift.

v

ψ’  ≈45°

m
ω≈0°

r

(b) 45° drift, ~m≈~r.

v

ψ’  ≈45°

m
ω ≈-20°
r

(c) 45° drift, ~m 6=~r.

Fig. 2. Drift and its effect. Bird-eye’s perspective onto a user wearing a
HMD. Offset ψ′ between real head direction ~r and virtual direction ~v; offset
ω between ~r and movement direction ~m.

leads to a displacement from right to left as a wrong head/view
direction ~v is used to render the VR images. For the user the
direction of the movement does not fit to the VR view. This
can cause motion sickness.

The key idea of this paper is to combine inaccurate posi-
tional tracking (horizontal error of ±20 cm) with relative IMU
data to achieve a long-time stable yaw orientation while the
user is (and keeps) walking naturally and also freely rotating
his/her head. Under the assumption that humans mostly walk
in their viewing direction we extract features from sensor
signals, classify the relation between real movement direction
and real head orientation (with supervised machine learning),
and combine this with absolute tracking information. This
yields an estimation of the absolute yaw orientation.

The rest of this paper is structured as follows. Sec. II
describes the problem. Sec. III describes our head orientation
estimation including a signal processing and feature extraction
pipeline for head-mounted IMUs that allow for head-related
movement classification. Sec. IV evaluates technical aspects
of our work. Sec. V reviews related work before we conclude.

II. PROBLEM DESCRIPTION

Sensors for relative movement estimation drift and in-
evitably cause a wrong yaw orientation in the long-run. But
often relative sensors are the only option as absolute sensors
(such as magnetometers) do not work reliably in practice.1

Fig. 2 illustrates different drift scenarios from a bird-eye’s
perspective onto a user with an HMD (in blue). In Fig. 2(a)
there is almost no drift (ψ′≈0°), see also middle row in Fig. 1.
The user’s real head direction ~r is close to his/her virtual head
direction ~v, i.e., the angle between ~r and ~v is zero. Movements
feel natural as the VR image is rendered with the correct head-
to-body pose, i.e., with a correct absolute yaw orientation.
In Fig. 2(b) the angle between ~v and ~r differs by ψ′≈45°,
see also bottom row in Fig. 1. When the user moves in the
direction of ~m s/he recognizes this as unnatural translation of
the rendered image towards ~v. Unfortunately, with an unknown
head direction ~r, a VR system does not know ψ′ and hence
cannot align ~v closer to ~r.

To understand our approach let us simplify first. Assume
that a fine-grained absolute position tracking (e.g., a radio-
frequency-based UWB system) of users is available, both
with respect to coordinates and time stamps. From a user’s
absolute positions over time we can then extract a trajectory

1With accelerometers one can absolutely estimate pitch and roll, but both
gyroscopes and accelerometers cannot absolutely estimate the yaw orientation.

vector ~m from pairs of consecutive absolute positions. With
the assumption that users always look forward in forward
movements, i.e., ~m=~r, a VR system can then deduce ~r, adjust
~v, and eliminate the drift that causes motion sickness. Of
course in reality the head is not always aligned, see Fig. 2(c).
If the user looks to the right by ω=−20° the adjustment of ~v
as described above would still yield a drift of 25°. The same
happens if ~m differs from the user’s real trajectory.

Instead of directly estimating the yaw orientation from IMU
sensor data, we solve the problem of how to use that data to
detect moments in which the user moves forward into his/her
viewing direction, because for those ~m=~r-moments or ω=0°-
moments, we know how to adjust the drift.

III. ESTIMATION OF THE HUMAN HEAD ORIENTATION

With supervised machine learning we classify ranges of
ω. If among all the ranges the ω=0°-moment class has the
highest probability, we have detected an ~m=~r-moment. From
the IMU data (accelerometer) we extract the linear acceleration
component, i.e., the real translational movement (without
gravity) in every direction, and use it in combination with
the gyroscope data to derive specific features that characterize
and represent a certain range of ω. We train a classifier for
all the ω-classes a-priori on pre-recorded and labeled feature
data. At runtime, we classify ω on live sensor data to detect
a ω=0°-moment if this class yields the highest confidence.

Fig. 3 outlines our processing pipeline. First, we smooth the
raw sensor signals with digital filters (Sec. III-A). In a training
step we extract features (Sec. III-C) for known ranges of ω on
labeled training samples to train the classifier. While a fine-
grained resolution of ω-range classes improves the classifica-
tion and its confidence, it also needs more data for the training
and more CPU cycles for the classification (Sec. IV-B suggests
parameters). At runtime, the trained classifier processes the
features of (smoothed) unknown signals and returns the best-
fitting ω-range class and its classification confidence. In ω=0°-
moments we determine the head orientation drift ψ′.

A. Signal Processing

Raw accelerometer and gyroscope data from a low-cost
IMU sensor are too noisy to extract reliable features. They
need pre-processing. Typical low-cost accelerometers accraw

track gravity and acceleration at 200 Hz up to ±16 g. Gy-
roscopes track the raw angular velocity gyrraw at 200 Hz
up to ±2000 °/s. To describe the user’s head-to-body-pose
accurately, we need to analyze the head’s motion, its pose, and
its rotation. Therefore, we separate the accraw into its gravity
component accgrav (which describes the pose, i.e., pitch and
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Fig. 3. Head orientation estimation processing pipeline.
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(b) ω=45°.

Fig. 4. Top: IIR (LP,HP)-filtered linear accelerations data accIIRlin . Bottom:
SG-filtered gyroscope data gyrSG. About one gait cycle, (=2 foot steps)
shown. Directions: red dashed lines X or ψ (yaw), green solid lines Y or θ
(pitch), and blue dotted lines Z or φ (roll).

roll) and the linear acceleration acclin (which describes the
motion).

We also filter both the gyrraw and accraw data to smooth
it. The details of the input data processing follow.

1) IMU Data Preprocessing: For the pre-processing of the
IMU data we use sliding windows, i.e., six windows to store
the data of accraw (3 axes) and gyrraw (3 axes). In contrast
to a simple moving average filter, our Savitzky-Golay-filter
(SG) removes signal noise, vibrations, and (small) motion
artifacts while significant changes remain in the filtered signal.
A small window of length n=25, a polynomial order of P=3
(higher orders capture noise only), and the usual SG-filter’s
convolution coefficients Ck are sufficient.

2) Accelerometer Data Filtering: To pre-process the
gyrraw data we eliminate noise with our SG-filter into gyrSG.
However, as the gravity component of the acceleration signal
reflects the real pose (pitch and roll) and the linear acceleration
reflects the motion, we separate the accelerometer signal in
its gravity and linear components: we first isolate the linear
acceleration with a linear recursive filter and then we derive the
gravity (gravity = raw acceleration minus linear acceleration).
The upper graphs in Fig. 4 show accIIRlin , the filtered signals
that only hold the linear acceleration components after the
application of a high-pass (HP) filter (that removes low-
frequent gravity components) and a low-pass (LP) filter (that
purges high-frequent noise and motion artifacts).

In preliminary tests we compared FIR (finite impulse re-
sponse) and IIR (infinite impulse response) filters. We found
that in our case, IIR filters outperform FIR filters as they yield
the smallest error and the fastest runtime with the smallest
delay (at a similar filter order). For each accelerometer axis
we thus use two IIR-filters (LP/HP) with a fast and reliable
Butterworth filter design. The linear and gravity acceleration
components are not SG-filtered but only IIR filtered.

As human motion happens below a frequency of 18 Hz [7]
we sample the signal above 40 Hz (in line with the Shannon-

Nyquist theorem). The LP filter compensates for artifacts such
as extremely fast head movements or vibrations. Some results
from our experiments: (1) Frequencies in [5; 20] Hz cover all
human motions in VR. (2) Users move/walk even slower in
VR. We set the cut-off frequency of the HP filter to 5 Hz to
compensate for the long-term vertical signal drift.

Each accelerometer measurement xi is pushed into a slid-
ing window of size n=12,000 that can hold the data of
one minute (200 measurements per second). This gives the
IIR filter enough history and allows to capture all available
frequencies/activities that are embedded in the signal. The
Butterworth filter gives the filtered accelerations yi for the
xi as yi = 1

a0
(
∑N

i=0 bi ·xi−1−
∑M

j=1 aj · yi−j), where a0···M
and b0···N are the filter coefficients of the feedback and the
feed-forward. It is an engineering task to derive optimal filter
orders (LP: Nlow=Mlow=3; HP: Nhigh=Mhigh=1). We found
that these values are a reasonable trade-off between filter depth
and computation time.

As the decomposition of the acceleration signal (into
accIIRgrav and accIIRlin ) is tied to the filtering and thus to the
loss of information of unique sensor characteristics we also
use the SG-filtered raw acceleration (accSG) to preserve both
the signal characteristics and the relation between the gravity
and the linear acceleration components.

This yields a total of 4 streams of pre-processed data
(with 3 axes each) that we use to extract features: SG-filtered
gyroscope rotations gyrSG, SG-filtered accelerations (includes
pose and motion) accSG, and two IIR-filtered accelerations,
separated into a stream for the gravity (pose) accIIRgrav and one
for the linear (motion) accelerations accIIRlin .

B. Influence of Motion IMU Signals

We are now ready to extract information on the head-
to-body-pose from the pre-processed data. To simplify the
explanation let us assume two (classes of) ω-angles, namely
ω=0° and ω=+45°. (Sec. IV evaluates a classifier for 7 classes
of ω-angles.) Fig. 4 shows the IIR-filtered linear accelerations
accIIRlin in its upper row and the SG-filtered gyroscope signals
gyrSG in its bottom row. On the left the user walks with
the head looking forward. On the right the yaw orientation is
ω=+45°. We can clearly identify oscillations in the X-axis
(red dashed curve) as the user’s head moves up and down
with each step. Since the head also moves back and forth (Z-
axis) and sidewards (Y -axis) with every step, there are smaller
oscillations in the blue and green curves. As the upper graphs
look alike, a classifier that detects whether a user walks straight
ahead into the direction of view or whether the head is turned
to the side, barely works with the acceleration signals alone.

When users walk, they balance out their heads’ up and down
movement with a nodding motion in the pitch-axis θ (green
solid line). In the ω=0°-moment (Fig. 4(a)) the nodding results
in a prominent oscillation of θ. If the head is turned sidewards
with respect to the movement direction then the nodding is
distributed over both the φ (blue dotted line) and θ (green solid
line) axes. There are similar rotations to balance out the other
head movements that can be seen in the acceleration peaks.
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Hence, the gyroscope data is also necessary to classify the
ω-angle. While in forward movements the acceleration signal
spreads its forces (both gravity and linear) over all axes, the
forces mostly concentrates in the Z-axis in the ω=0°-moment
and shifts to the Y -axis when the head is turned sidewards.
Thus, the correlation between the Y - and Z-axes gives some
insight into how far the head is turned to the left/right.

Besides the linear acceleration that represents the movement
of the head we are also interested in the pose of the head as
it indicates how humans hold their heads. As gravity indicates
the pitch and roll of a sensor with respect to the ground, the
pose of the head is based on the gravity components per axis.
Intuitively, that is why we also need the IIR-filtered gravity
stream accIIRgrav that is left out from Fig. 4.

C. Feature Selection

Now that we have motivated that the 4·3=12 signal streams
hold enough information to extract and classify the ω-angle,
we turn them into a stream of features that capture the intuition
and that the classification algorithm can make use of.

Potential features from the literature [8] have different
runtimes (both during training and runtime) and yield different
confidences. It is an engineering task to find a minimal set of
features that uniquely describe a class and that are separable
from the features of other classes. Recall that for the signal
filtering in Sec. III-A we picked the window size according
to the needs of the filters. Similarly, the computations of the
features have to process a certain window of the (filtered)
signal data. The above discussion of Fig. 4 has motivated that
at least the signals of one full gait cycle are needed to classify
the ω-angle. From a pre-examination we know that adding
more gait cycles does not improve the results but slows down
the feature extraction. When users walk at a normal speed in
a typical VR setup, one cycle fits into about 1000 ms, i.e.,
into 200 (filtered) signal values.2 We found that for each of
the 12 signal streams the following four features (computed
over the full window of size n=200) keep the required CPU
resources low while yielding a good classification. We give
some rationale why they capture what the classifier needs.

1) If a sliding window would hold the sensor data of exactly
one gait cycle, the mean µ of the values remains constant, even
if the window slides over the motion. Conceptually, there are
always one or two full waves in the window (depending on
the axis), only the cut-off point varies at which the window
starts. If the sliding window holds more (or less) than a full
gait cycle, then the mean value varies with the cut-off point,
as a varying fragment of a wave is an extra (or missing) part
of the window. µ then oscillates and captures at which spot
of the gait cycles the sliding window starts (at any point of
time). µ also helps classifying the moments when the user is
standing (ω =?-moments) since when the user is not moving,
µ no longer oscillates (that much) and stays around 0.

2According to [9] users perform 1.5 steps/s when walking at 1.4 m/s in
reality but tend to walk slower in VR: slow speed = 0.75 m/s, normal speed
= 1.0 m/s, and fast speed = 1.25 m/s.

2) The standard deviation SD represents the intensity of
signal fluctuations (due to nodding, balancing, etc.). This is
a reasonable choice for our classification task as the head
turns right/left (Y-axis) in consequence of the walking and
as this movement (and thus its SD) is stronger in ω=0°-
moments than when ω is at ±45°. Above we discussed that
the gyroscope data is necessary to distinguish positive from
negative ω-values; thus we also need the SD of gyroscope
data.

3) As we have argued above, the correlation between the
Y- and Z-axes corryz gives insight into how far the head
is turned/rotated around the yaw axis. The X-axis values are
more or less irrelevant. In ω=0°-moments the force is mainly
present on the Z-axis whereas in ω=±45°-moments it is spread
over the Y - and the Z-axes. For use as a feature, we therefore
calculate the correlation κ = tan−1(ZY ). Due to the orientation
of the coordinate systems, κ is in [0°, 180°] as users cannot
turn their heads to their backs. The classifier can detect a
ω=0°-moment when κ=90°, with a tolerance of ±20° as most
humans do not notice a yaw drift below 20° [10].

4) We calculate a Principal Component Analysis pca and
use strong eigenvectors to map the data window onto a single
value that we use as a fourth feature. All the eigenvectors
together describe the time-dependent variances between all the
values that exist within the window, i.e., they describe how the
signal fluctuates. For instance, for the ω=+45°-moments from
Fig. 4(a) there are eigenvectors that describe the slight kink in
the X-value of the acceleration at around 600 ms in relation
to the peak at around 900 ms.

We consider the sliding window to be a 200-dimensional
vector on which we apply a singular value decomposition
(SVD) to derive 200 eigenvectors and eigenvalues that de-
scribe how the values are distributed in the window. As our
signals are continuous this yields windows that contain similar
eigenvectors (with similar eigenvalues). For each window we
create a histogram over all the eigenvectors (multiplied with
the data vector and scaled by the eigenvalue to get a single
value) and let a binning algorithm find meaningful clusters of
eigenvectors. We then use the bin with the largest value (the
highest variance/information density) as the pca feature.

We found that the set of 12 (one per input stream) strongest
histogram peaks provides a good basis to separate ω=?- and
ω=0°-moments from other ω-angles. Moreover, our pca can
also distinguish negative from positive ω-values as both the
gyroscope and the accelerometer data have significant signal
variations that uniquely describe those movements.

From the 4·3 signal streams we thus extract a total of
4·3·3=36 streams (µ, SD, and pca), plus 4 streams for corryz
to combine the axes. In Sec. IV-B we evaluate the runtime
with respect to the importance to the 36+4=40 feature streams
and show that in combination they separate the ω-angles well
enough to detect the ω=0°-moments that are needed to reduce
the drift of the VR-display. Other research also uses similar
sets of features. They are a good trade-off between model
complexity, computation time, and classification rate [11].

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on December 30,2021 at 20:23:41 UTC from IEEE Xplore.  Restrictions apply. 



2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 September 2018, Nantes, France

IV. EVALUATION

After sketching our measurement setup we evaluate the ac-
curacy of ω-moment detection and justify our feature selection.

A. Measurement Infrastructure and Setup

On a tracking space of about 45 m × 35 m, all experiments
use a Samsung Galaxy Note 4 smartphone (Android 6.0.1,
Qualcomm Snapdragon 805 CPU, 3 GB RAM) attached
to a Samsung Gear VR HMD (SM-R320 equipped with a
BOSCH 6 DOF IMU sensor BNO-055). The IMU measures
accelerations within [±2, ±16] g and gyroscope rotations
within [±250,±2000] °/s. The Android sensor API cuts off
sensor readings above 200 Hz. Although a sampling rate of 40
Hz would suffice for the frequency range of human motion [7]
and satisfy the Nyquist-Shannon theorem, we still use 200
Hz since the OS and JVM cause unpredictable power state
switches and some timing jitter. The 200 Hz sampling rate also
stabilizes the IIR-filters. The filter parameters and assumptions
that we made in Sec. III are in line with the specification and
limitations of the hard- and software we use. In addition to the
IMU data, for the training and the evaluation of the classifiers
in Sec. IV-B we also need highly precise yaw orientation
measurements to label the IMU data. We obtain such labels by
means of a Nikon iGPS system, an optical laser-based tracking
system with an average vertical/horizontal accuracy below 10
mm at 20 Hz. We use a head-mounted apparatus that carries
two locatable objects at a distance of 50 cm from which we
calculate the absolute yaw orientation. We also use the iGPS
system to (re)calibrate the yaw orientation to measure the drift
before/after our studies.

Fig. 5(a) is a bird’s-eye view onto our VR measurement
scenario which is computationally efficient so that we achieve
a constant frame rate of 60 Hz. Fig. 5(b) is the corresponding
ego-perspective with the visuals that guide the participants of
our experiments. The blue line ~m on the ground always leads
to the red pillar (B) or to the blue pillar (A). The target T
and a green line from the user towards T move with the user
and help retain a desired ω-angle of the head. The target T is
placed according to the ω-angle used in an experiment. Users
are asked to walk naturally but to always aim their head’s yaw
at T with an arbitrary pitch and roll, using the green line that
is always in their middle of the screens.

B. Classification Performance

To evaluate the feature selection from Sec. III-B and the
classifier performance we collected data with a group of 34

A

B

C

(a) Users walk 50 m between
A and B or stand at C.

T

m r = v
(b) The target T helps retain a desired
ω-angle. Blue line = walking path,
green line = view direction.

Fig. 5. Top-view (a) and first-person-view (b) of our VR scenario.

subjects (avg. age 23.16 [18, 36] years; avg. height 1.74 [1.49 -
1.81]m; 20 male, 14 female; nobody disabled or handicapped)
and let them walk 10 times naturally from A to B on path
~m and back, see Fig. 5. We introduced the participants to
the setup and to the purpose of the measurements beforehand.
While we collected the IMU data from the HMD we also
measured ~r with the iGPS system to obtain precise yaw
orientations, i.e., a labeling of the IMU measurements. We
asked the users to walk naturally and relaxed at a normal
speed (avg. 0.87 m/s, min.: 0.58 m/s, max.: 1.19 m/s,
SD: 0.18 m/s) and to keep their heads at a fixed ω-angle
[−45°;−30°;−15°; 0°; +15°; +30°; +45°] with the help of the
target T and the green line. Our VR system also used a voice
feedback to alert a user when s/he undercut or exceeded the
target-ω by more than 5°. To obtain a close-to-natural head
pose while walking, we did not enforce a rigid head pitch
and roll. The collected data shows the typical compensation
movements [10], [12] of the heads along the users’ trajectories
(Sec. III) and the data also includes natural noise and jitter
around the target-ω. In a post-processing step we cleaned the
data both from the moments when ω was outside of the target
zone and from the moments when the users turned around at
B or A. We recorded about 8 h of movement data. According
to Sec. III-B we pre-processed it and extracted the feature
streams. To avoid minority oversampling, we removed some
(random) samples so that all ω-classes have the same size.

1) Classifier Comparison: We study the performance of
three classifiers. First, a Support Vector Machine (SVM)
with a cubic kernel function K(xq, xi) = (1 + γ · xTq xi)d.
Since we need a multi-class classification we use a One-
vs-All SVM. Second, a Classification And Regression Tree
(CART) Decision Tree (DT) model. According to preliminary
experiments, a DT performs best for the ω-classification when

TABLE I
RESULTS OF A 10-FOLD CROSS-VALIDATION IN % FOR 3 CLASSIFIERS:
SVM CLASSIFIER IN THE UPPER NUMBERS OF THE CELLS, DT IN THE

MIDDLE, K-NN AT THE BOTTOM. TRUE ω-CLASSES ALONG THE VERTICAL
AXIS, CLASSIFICATION RESULTS HORIZONTALLY. CORRECT

CLASSIFICATIONS IN BOLD AND MISCLASSIFICATIONS IN NORMAL FONT.
SHADED: SUCCESS RATE = CORRECT CLASSIFICATIONS OF

ω=0°-MOMENTS.
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configured with no more than 100 splits, a minimal leaf
number of 1, the Gini diversity index IG as split criterion,
and a subsequent pruning that keeps more than 10 parents
per leaf. Third, a cubic k-Nearest Neighbor (KNN) that
according to preliminary experiments works best for us when
it is used with a distance parameter k=3, a distance function
(X×Y )n→(X→Y ), and cubic Minkowski distance metrics.

With each of these classifiers we run a 10-fold cross-
validation against the 4·3·3+4=40 labeled feature streams. It
splits the data into 10 equally large sub-samples and uses 9
sub-samples for the training of the classifier and the remaining
sub-sample for the validation. This is repeated 10 times with
each sub-sample once being the validation set. All classifiers
almost perfectly detect ω=?-moments. When the participants
are walking, the SVM classifier yields the highest correct
classification rate, i.e., the highest confidence for all ω-angles
(min: ω=+15° at 74%, max: ω=? at 99%). All classifiers
clearly separate ω=0°-moments from other ω-ranges. The
SVM classifier correctly classifies most (86%) of them.

To process the 40 features of all streams, the SVM classifier
takes 259 µs (per update) whereas DT and k-NN take 29 µs
and 1091 µs, resp. As the SVM classifier outperforms the DT
classifier, the extra runtime is worth it.

2) Feature Comparison: We train and use the classifiers
both with different subsets of the features (µ, SD, corryz , and
pca) and on different subsets of the input streams (accraw,
gyrraw, accSG, gyrSG, accIIRgrav, and accIIRlin ). No matter
for which combination of features and streams we use the
three classifiers, SVM clearly outperforms the other two. Thus
below we discuss the numbers of the SVM classifier only. The
more features and input streams are used, the better the success
rate gets (up to a maximum of 86%). The more features and the
more data there are to process, the longer a single classification
takes (up to 259 µs).

When only the raw signals are used to classify ω-moments
the best achievable success rate is 78%. It is better to use SG-
filtered streams instead (81%). The sensor-specific information

TABLE II
SUCCESS RATES (= CORRECT CLASSIFICATIONS OF ω=0°-MOMENTS) OF

THE SVM CLASSIFIER IN % WITH A SUBSET OF THE FEATURES
(VERTICAL) AND ON A SUBSET OF FILTERED INPUT DATA STREAMS

(HORIZONTAL). SYMBOL − INDICATES A FEATURE OR DATA STREAM
THAT IS LEFT OUT. THE BOLD 86 IS ALSO IN TABLE I. UNDERLINED

NUMBERS ARE DISCUSSED.

Features

Streams

a
cc

r
a
w
|
−
|

−
|g
y
r
r
a
w
|

a
cc

r
a
w
|g
y
r
r
a
w
|

a
cc

S
G
|
−
|
−

|
−

−
| g
y
r
S
G
|
−

|
−

−
|
−
|a
cc

I
I
R

g
r
a
v
|
−

−
|
−
|
−

|
a
cc

I
I
R

li
n

a
cc

S
G
| g
y
r
S
G
|
−

|
−

a
cc

S
G
| g
y
r
S
G
|a
cc

I
I
R

g
r
a
v
|
−

a
cc

S
G
| g
y
r
S
G
|
−

| a
cc

I
I
R

li
n

a
cc

S
G
| g
y
r
S
G
|a
cc

I
I
R

g
r
a
v
| a
cc

I
I
R

li
n

C
PU

(a
ll

st
re

am
s)

[µ
s]
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− |SD | − | − 69 60 68 63 75 64 69 57 56 58 59 60
− | − |corryz | − 14 6 67 14 14 6 9 65 73 69 68 62
− | − | − | pca 71 12 66 64 12 65 11 64 68 70 71 63
µ |SD | − | − 66 54 60 67 39 67 40 77 78 77 78 93
µ |SD |corryz | − 73 50 76 71 42 70 40 79 83 83 83 109
µ |SD | − | pca 73 56 77 73 44 72 44 79 80 81 83 161
− | − |corryz | pca 70 13 74 70 25 68 19 72 73 75 76 87
µ |SD |corryz | pca 73 52 78 73 42 72 41 81 84 83 86 259

(noise, response time, min-max-range) that is lost by the
filtering does not hurt (SD on accraw 69% vs. accSG 63%) as
the combination of several features and filtered input streams
outperforms the classification based on raw data streams (even
in all possible combinations).

Let us now discuss the effect of using an individual feature.
The pca feature on its own provides the highest success rate
(71%). The corryz feature extracts similar information from
the streams and closely follows at a similar computational cost.
The features µ and SD perform worse (regardless of how
many input streams are used). This is because µ only describes
the cut-off points of the gait cycle in the sliding window, and
SD only provides energy information, i.e., it only separates
ω=? from ω=0° as their variances differ the most. More input
streams only repeat this information and thus do not increase
the success rate.

Combining the features yields higher success rates. While
a combination of µ and SD already boosts the classification
(78%), an extra corryz (83%) or pca (83%) helps even more
as these features describe different characteristics, e.g., motion
direction or an abstract signal pattern. That is also why
combining corryz and pca alone performs worse (76%): the
movement’s state and type are missing. The complete feature
set on all input streams yields a success rate of 86%.

3) Resulting Classification Accuracy: For the purpose of
the drift elimination the classification results are even better
as humans tolerate a drift of 20° without noticing it [10].
Misclassifications to an adjacent ω-class (±ω=15°) are also
tolerable. Then the SVM-classifier yields a correct result in
86+3+6=95% of the cases.

After this coarser classification we compare consecutive
results with the gyroscope signals. Since there must be a
correspondence as humans cannot turn their heads too much
between samples we can fix all remaining misclassifications.

C. Applicability For Real-World Use Cases

Being able to detect ω=0°-moments and to purge the drift is
of course only relevant in practice if ω=0°-moments do occur
often enough. To check how often and for how long humans
walk towards their viewing direction in a freely walkable,
large-scale and multi-user VR, we asked 79 (other) subjects
(avg. age 32.34 [18, 63] years; avg. height 1.71 [1.49 - 1.96]
m; 43 male, 36 female; nobody disabled or handicapped) to
explore a virtual museum [13] that holds six different exhibits
of real sized dinosaurs on 45 m × 35 m.

We used the same Samsung GearVR HMDs to record the
sensor streams (accraw and gyrraw) and our UWB tracking
system (CEP95=20 cm at 20 Hz) that tracks the absolute
positions of the heads (similar to [14]). We use the iGPS
apparatus to (re)calibrate and measure the absolute head
orientations before and after each walk.

On average, each participant performs 41 separate ω=0°-
moments within a 3 minute interval (min: 36, max: 54, SD:
7.4) at an average walking speed of 0.74 m/s (min: 0.56 m/s,
max: 1.60 m/s, SD: 0.14 m/s) and an average distance of
1.18 m (min: 0.51 m, max: 2.27 m, SD: 0.37 m). Hence our
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calibration can kick in every 4.4 s (=180 s / 41). This shows
that users tend to walk more frequently and longer towards
their viewing direction, i.e., there are enough ω=0°-moments
for a robust yaw estimation.

D. Possible Limitations

It is not a limitation in practice that our approach relies
on the availability of the sensor data of a full gait cycle in a
fixed-size sliding window and also of an (inaccurate) absolute
position vector. The reasons are: (1) Although users walk
slower in VR than in the real world, a sliding window of 1 s
(200 Hz) suffices as it holds two steps and spans a position
vector of about 1 m at a negligible positional error. (2) The
evaluation in Sec. IV-C shows that in a real-world use case
variable movement speeds do not impede the classification
accuracy. (3) While a window length of 200 Hz is large enough
for both walking and running, for higher velocities a larger
window can be used. (4) For relevant window sizes, both the
feature extraction and the classification are fast enough to be
hidden in other latencies. Both the SG- and IIR-filters yield
a signal stream that is delayed by 47 ms on average with
respect to the absolute position stream (min.: 27 ms, max.:
76 ms, SD: 6.3 ms, in theory 1/8th of the sliding window
size). We found that the pre-processing of the radio-frequency
based position tracking system suffers from an ’over-the-air’
transmission delay and is also late by 57 ms on average (min.:
32 ms; max.: 76 ms, SD: 5.9 ms). Thus the total delay/shift
averages out and is hence negligible. (5) A pre-processing step
helps to only run the classification when the users walk on
straight trajectories (minimal distance covered is ≥1 m or the
duration is ≥1 s).

The accuracy of the training data poses a threat to the
classification performance and hence to the effectiveness of
our technique. The classification can only be as accurate as
the data it is trained on. The more diverse the training data
is (e.g., more participants, more variations and different types
of motions), the higher is the confidence of the classification
at runtime. But even without such a (re)training, we already
see our method working fine in daily use, even for unknown
motion of new VR users.

It is not a limitation of our approach that we only estimate
the yaw orientation on ω=0°-moments. We simply do not need
a full 3D pose (re)calibration, since pitch and roll are already
accurate from accelerometer and gyroscope data.

V. RELATED WORK

VR systems need accurate head orientations. Traditionally,
they use (local) reference systems with absolute orientations
of the tracked objects. The head pose is often estimated in the
tracking system instead of near the HMD. To reduce latency
and to increase update rates we do the latter. Foxlin [15]
also uses the IMU so that the reference system only needs
to stabilize the estimations over time. But in contrast to our
users, his users cannot move freely in the limited tracking
space. We also do not need to stabilize a filter with ’ground
truth moments’ from feet-mounted sensors when a foot hits

the ground to estimate the absolute orientation [3]. Moreover,
the feet (or torso) orientation does not tell the head orientation
since these are different rotation systems. Until today, there is
no publicly known noise measurement model that accurately
represents the dynamics of the head and that reliably works
for longer than a minute [4].

Kinect, Tango, and ARKit use SLAM that only works
well under restricted conditions (small rooms, heterogeneous
surface textures, static scenes, and homogeneous lightning).
Because of methodical (labile feature detection [1]) and
physical (depth sensing) limitations of RGB [1] and RGB-
D sensors, today’s SLAM cannot provide our dynamic and
flexible VR experiences for immersive, freely walkable VR
applications [16].

Orientation estimation techniques for NP tracking with
IMUs differ from typical VR systems [17]. When highly
precise and more expensive sensor data is available some
works estimate both position and orientation with Bayesian
filters [18]. The commonly used (extended) Kalman filters
doubly integrate over the sensor signals and require precise
models of the accelerometer sensor to properly extract linear
acceleration [19]. For low-cost IMUs that lack precise mea-
surement models Bayesian filters are not a viable solution,
except when reliable magnetometer data can be exploited
to reduce the yaw orientation error [20]. We do not need
magnetometers.

While Human Activity Recognition can detect activities
such as standing, walking, and sleeping with IMUs placed
on body parts other than the head, the estimation of the
head orientation is not the focus of those approaches. Windau
and Itti [21] classify activities with head-mounted IMUs, but
for good results a user’s head must point into the direction
of the movement. In contrast, our approach only needs a
head-mounted IMU and users can freely move their heads.
Beauregard et al. [22] use a helmet-mounted IMU, but for a
different purpose, namely to estimate step length and heading.
However, their neural network approach only works for fixed
helmet-to-body orientations, i.e., as long as the orientations
of the sensors align with the orientation of the body [23].
In contrast, our users can rotate their heads freely. Steed
and Julier [6] compensate the yaw orientation drift of two
different rotation systems (torso and hand) by merging both
rotation systems so that the total relative yaw drift accumulates
only along one axis. Their method thus cannot provide a
correct absolute yaw orientation. They also exploit hand-to-
body movement to derive the absolute yaw orientation from
the context, e.g., they assume that VR users look at their hands
when opening a door. In addition to the necessity of carrying
sensor devices in the hands, this is a rather strong assumption.

Human-centric navigation systems that use Pedestrian Dead
Reckoning with IMUs also need the orientation of sensors for
reliable results. There are studies for various sensor combi-
nations [5] and with different positions of the IMU on the
body (hands [24], wrists, feet and legs [25]). Conceptually,
PDR estimates both displacement (from step-detection and
step-length estimation) and head orientation (from gyroscopes
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and magnetometers) [4]. With feet-mounted sensors the re-
sulting positional error can get as low as [0.3%; 2%] of the
total traveled real distance [2] since the systems can exploit
recurring points when the IMU does not move. With solely
head-mounted IMUs we cannot use this idea.

Some PDR research uses magnetometers to stabilize the
head orientation estimates [26]. The idea is that each footstep
leads to a specific head rotation. As the head rotation signal
pattern can be learned a-priori, it can later be detected and used
at runtime to correct head orientation errors [27]. Conceptually
those approaches can also be used for other types of head-
mounted IMU sensors. But there are more disadvantages that
our approach avoids. First, such filters need to be parame-
terized (trained) per user. Second, if a user’s body and head
rotate in sync, such filters are confused and must be recovered
manually. In contrast, our approach not only avoids unreliable
magnetometers, we also avoid user-specific filters and are
immune to synchronous movements of body parts.

VI. CONCLUSION

This paper shows how to estimate long-term stable absolute
head-to-body orientations from inaccurate positions and noisy
inertial sensors mounted at the head.

To achieve this goal, we presented a set of features to be
extracted from filtered sensor data that (after some training
with labeled data) a Support Vector Machine (SVM) classifier
can use to reliably detect exactly those moments in which
users walk with their heads facing forward and in which our
VR system can thus derive the accumulated drift.

In typical multi-user and large-scale VR scenarios, e.g.,
museums and theme-parks, our technique can easily determine
a user’s head-to-body pose several times per minute, whenever
the user looks in the direction of the movement, even with
natural and relaxed motion (including the head).
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