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Figure 1: Real (top) and virtual world (bottom).

ABSTRACT

Pose tracking does not yet reliably work in large-scale interactive
multi-user VR. Our novel head orientation estimation combines a
single inertial sensor located at the user’s head with inaccurate posi-
tional tracking. We exploit that users tend to walk in their viewing
direction and classify head and body motion to estimate heading
drift. This enables low-cost long-time stable head orientation. We
evaluate our method and show that we sustain immersion.

Keywords: VR, head tracking, inertial sensor fusion, immersion,
large-scale, machine learning, motion sickness.

Index Terms: Computing methodologies [Supervised learning by
classification] Human-centered computing [Virtual reality]

1 INTRODUCTION

VR drives innovation in applications for theme parks, museums, ar-
chitecture, training, simulation, etc. They all can benefit from multi-
user interaction, from areas beyond 20 m × 20 m, and from natural
movement without motion sickness. However, SLAM-based pose
estimation only works reliably under restricted conditions (small
rooms, static scenes/no moving objects, homogeneous lightning) [2].

Low-cost no-pose tracking systems work on larger tracking areas
and for more users, but as they only provide positions we need to
estimate the head orientation separately. Low-cost Head-Mounted
Display (HMD) units with their inertial measurement units (IMU)
yield inaccurate estimates, as (i) magnetometers are unreliable in
many indoor environments and provide a wrong absolute head ori-
entation [6], (ii) dead reckoning based on relative IMU data leads to
drift and (after a while) to a wrong estimate [3], and (iii) state-of-the-
art filters fail to provide reliable motion direction estimates as they
require either accurate sensor models or military-grade sensors [1].
While Human Activity Recognition can detect activities such as
standing, walking, and sleeping with IMUs placed on body parts,
they do not estimate the absolute head orientation [4, 6].

A wrong orientation estimation results in a mismatch of the real
world and the VR display. The upper row in Fig. 1 shows the real
world view of a user who walks straight ahead with his/her head
oriented (�r) in the direction of the movement �m, i.e., �m=�r. However,
under drift (the bottom row shows a 45° sensor drift) the same
movement leads to a displacement from right to left as a wrong
head orientation (�v) is used to render the VR images. For the user
the direction of the movement does not fit to the VR view. The
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sensor drift inevitably causes a wrong head orientation. If there is
almost no drift the user’s real head orientation�r is close to his/her
virtual head orientation�v; movements feel natural as the VR image
is rendered with the correct orientation. Otherwise the user moves
in the direction of �m and recognizes an unnatural translation of the
rendered image towards�v.

Our key idea is to combine inaccurate positional tracking (error
±20 cm) with relative IMU data to achieve a long-time stable head
orientation while the user is walking naturally and rotating his/her
head. Under the assumption that humans mostly walk in their view-
ing direction we extract features from sensor signals, classify the
relation between real movement direction and real head orientation,
and combine this with absolute tracking information. This yields an
estimation of the absolute head orientation that we use to adapt the
offset into a user’s virtual view.

2 LONG-TERM STABLE HEAD ORIENTATION ESTIMATION

Assume that a fine-grained absolute position tracking (both with
respect to coordinates and timestamps) of users is available. Then we
can record a user’s positions over time and extract a trajectory vector.
With the assumption that users look forward in forward movements
(�m=�r) a VR system can then deduce�r from the trajectory vector,
adjust�v, and thus eliminate the drift that causes motion sickness.

Instead of directly estimating the head orientation from IMU sen-
sor data, we use machine learning to detect �m=�r-moments, because
then we know how to adjust the drift (we set�v=�m).

Fig. 2 outlines our processing pipeline. First, we preprocess the
raw IMU sensor signals (i.e., accelerometer and gyroscope) with
digital filters. With supervised machine learning we then classify the
movement along various head-to-body orientations ω . In a training
step we extract features for known ranges of ω on labeled training
samples to train the classifier. At runtime, the trained classifier
processes the features of preprocessed unknown signals and returns
the best-fitting ω-range class and its classification confidence. In
�m=�r-moments, i.e., ω=0, we determine the head orientation drift
and use a linear interpolation to reduce the drift (i.e., to adjust�v to�r)
in an immersive way so that users do not notice it.

Signal Processing. Raw accelerometer (acc) and gyroscope (gyr)
data from a low-cost IMU sensor needs a preprocessing before we
can extract reliable features. Our low-cost acc tracks gravity and
acceleration at 200 Hz up to ±16 g. Our gyr tracks the angular
velocity at 200 Hz up to ±2000 °/s. To preprocess the IMU data
we use 6 sliding windows for the acc- and gyr-streams (3 axes
each). We smooth the raw accraw and gyrraw data to eliminate
noise with an Savitzky-Golay-filter (SG) (window length 25 and a
polynomial order 3) into accSG and gyrSG. To describe the user’s
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Figure 2: Head orientation estimation processing pipeline.
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head-to-body-pose accurately, we also split accraw into its gravity
(describing the pose) and linear (describing the motion) components
accraw

grav and accraw
lin with low-/high-pass (LP/HP) IIR-filters (HP/LP

cut-off frequencies of 5/40 Hz, window length 12,000). This yields
4 streams of preprocessed data (with 3 axes each) that we use to
extract the features: gyrSG (rotations), accSG (pose and motion),
accIIR

grav (pose), and accIIR
lin (motion).

Feature Processing. We turn the 4·3 preprocessed signal streams
into feature streams that capture the intuition and that a classifier
can make use of. The following small set of features uniquely de-
scribes a class (ω-angle): (1) mean μ (starting spot of the current
gait cycle), (2) standard deviation std (intensity of signal fluctua-
tions), (3) correlation corryz between the Y- and Z-axes (variant head
orientation), and (4) Principal Component Analysis pca (highest
variance/information density). From the 4·3 signal streams we thus
extract a total of 4·3·3=36 streams (μ , std, and pca), plus 4 streams
for corryz. From a pre-examination we know that the signals of one
full gait cycle suffice to classify the ω-angle and that the necessary
feature computations keep the required CPU resources low. Adding
more only slows down the feature extraction. When users walk in a
typical VR setup, one cycle fits into about 1 s, i.e., into 200 (filtered)
signal values.

Classification. We studied 3 classifiers: a Classification & Re-
gression Tree, a k-Nearest Neighbor, and a Support Vector Machine
(SVM). The SVM (with a cubic kernel function) provided the most
confident and reliable results. Since we need a multi-class classifica-
tion we use a One-vs-All SVM.

View Adaptation. To adapt�v so that it feels natural to the user
we linearly interpolate and gradually apply the estimated orientation
error to the current view orientation�v. We interpolate from the start
orientation�v to the end orientation by a small and immersive portion
of the drift ωimm between consecutive frames and subtract it from
the error. Pre-tests taught us for a better immersion to only adapt the
view in the direction of the current turn, i.e., to exaggerate turns and
to only adapt while the user performs a yaw rotation.

3 EVALUATION

On a tracking space of about 40 m × 35 m, all experiments use a
Samsung Galaxy Note 4 smartphone that has a 6 DoF IMU sensor
from InvenSense (MPU-6500) attached to a Samsung Gear VR
HMD (SM-R320). In addition to the IMU data, for the training and
the evaluation of the classifiers we also have highly precise head
orientation measurements to label the IMU data from an optical
laser-based Nikon iGPS system tracking system with an accuracy
<10 mm at 20 Hz. We use a head-mounted apparatus that carries
two locatable objects at a distance of 50 cm to calculate the absolute
head orientation. We always introduced the participants to the setup
and to the purpose of the measurements beforehand.

Classification. To evaluate the feature selection from Sec. 2 and
the classifier performance we collect data with a group of 34 subjects
(avg. age 23.16 [18, 36] years; avg. height 1.74 [1.49 to 1.81] m;
20 ♂, 14 ♀; nobody disabled or handicapped) and let them walk 10

times naturally on a 50 m path ( �AB and �BA, see Fig. 3(a)) within a VR
environment (rendered at const. 60 f rames/s, walking speed avg.:
0.87 m/s, min.: 0.58 m/s, max.: 1.19 m/s, SD: 0.18 m/s). A target
T and 2 colored lines, see Fig. 3(b), helped them. While we collect
the IMU data from the HMD we also measure�r precisely with the
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Figure 3: Top-view (a) and first-person-view (b) of our VR scenario.

Table 1: Success rate of a 10-fold cross-validation in % for the SVM.
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iGPS system for the labeling. Users were asked to keep their heads
at a fixed ω-angle [−45°;−30°;−15°;0°;+15°;+30°;+45°]. To
obtain a close to natural head pose while walking, we did not enforce
rigid head pitch and roll. We recorded about 8 h of movement data.

Table 1 shows the results of a 10-fold cross-validation on different
combinations of signal and feature streams. The more features and
input streams are used the better the result gets. The complete feature
set on all streams yields a correct classification in 86% of the cases.

When the participants are walking, the classifier easily separates
�m=�r-moments from others, i.e., the ω=0°-class. Assuming that
humans tolerate a drift of 20% without noticing it [5] we even
achieve a correct classification in 95% of the cases. To process all
the 40 features of all streams, it takes 259 μs (per update).

View Adaptation. The user’s rotation in the VR-display can be
exaggerated or reduced by ±30% without the user noticing it [5].
Thus, for dynamic scenarios (with moving and turning users) we
pick ωimm=0.3·d to adapt the drift while the user is turning by d°.
For static scenarios (without moving and turning), we use a group
of 52 (other) subjects (avg. age 25.82 [19, 41] years; avg. height
1.72 [1.51 to 1.87] m; 34 ♂, 18 ♀; nobody disabled or handicapped).
Users stand stationary at C, see Fig. 3. We asked them to announce
significant jitter and/or jumps of the camera view as early as they
notice them while we iteratively reduce the heading error by ωimm +
0.1. We found that we can always (even in static scenarios) adapt
the view by picking an unnoticeable ωimm ≤0.9°/s. In movements
we can set the upper bound below ωimm=4.8 °/s.
4 CONCLUSION

The paper shows how to estimate absolute head-to-body orientations
from inaccurate positions and noisy inertial sensors mounted at the
head. With a set of features extracted from filtered sensor data (after
some training with labeled data) an SVM classifier can reliably
detect moments in which users walk with their heads facing forward
and in which we can thus determine the accumulated drift. VR users
do not notice our maximal error of ±15 ° when the estimation is
used to immersively correct the drift of the displayed VR images.
We successfully use the proposed method in VR, e.g., in museums.
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